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The increasing demand for wireless broadband services poses the need
for the efficient utilization of the backhaul network resources. To this
end, schemes that use artificial neural networks in order to predict
the forthcoming network traffic demand and proactively request the
commitment of the necessary resources have been proposed. However,
an up-to-date prediction model, required by these schemes, necessitates
for a regularly held training process, which incurs a high computational
cost. In this letter, the authors investigate the tradeoff between prediction
accuracy and computational efficiency by employing evolutionary game
theory and propose a novel scheme that can achieve both aspects.

Introduction: During the last years, the plethora of available wireless
broadband services has led to an increasing demand for high end-user
data rates [1]. Unfortunately, this increased traffic demand, which is
also characterized by great fluctuations, constitutes the traditional flat
commitment of the backhaul network resources inefficient. As a result,
novel dynamic schemes are required in order to achieve a more efficient
utilization of the backhaul network and provide enhanced QoS to the
end users. To this direction, schemes that estimate the forthcoming
demand by using historical data of the network traffic and proactively
request the commitment of the necessary resources have been proposed.
The majority of these schemes presents artificial neural network (ANN)
based approaches [2], exploiting their ability to capture the non linear
characteristics of network traffic. Specifically, in [3], the authors proposed
a prediction model for the aggregated demand of the base station (BS),
based on ANNs. It was shown that the traffic demand can be accurately
predicted, and as a result, the BS can proactively request for the
commitment of the necessary resources from the backhaul network. In [4],
the authors studied the Internet traffic forecasting problem and they showed
that ANNs outperform an autoregressive moving average model, providing
accurate short-term results. In [5], the authors studied the prediction of
variable bit rate traffic in asynchronous transfer mode networks using
ANNs, while in [6], ANNs were used in order to forecast video streaming
traffic.

Though all the above ANN-based schemes propose network traffic
prediction models that can provide accurate results, they do not discuss
the significance of the training process in achieving functional efficiency.
It is evident that, in order to obtain accurate prediction results, an up-to-
date model is required which necessitates for a regularly held training
process at the expense of an increased computational overhead. In the
current letter, the tradeoff between computational efficiency and prediction
accuracy with respect to the frequency of the training process is studied
and a novel scheme that can achieve both of its aspects is proposed. The
authors treat the aforementioned tradeoff as a decision making problem
and employ evolutionary game theory [7] in order to study its dynamics.
Finally, a bifurcation analysis of the proposed scheme is also presented.

Problem Formulation and Relevant Assumptions: Assume a prediction
model, which is responsible for monitoring the aggregated bandwidth
demand of an access point (AP), storing the necessary data and using
ANNs to predict the forthcoming bandwidth demand. Specifically, a set
of W input-output pairs, derived from these observations, is used to train
the ANN. The training process is held periodically, and it is expected
that an up-to-date prediction model will provide more accurate results
regarding the forecasting process. However, the training process incurs a
corresponding computational overhead. Hence, there is a tradeoff between
accurate prediction results and computational efficiency in the proposed
scheme.

Consider that the prediction model uses a sliding window in order to
select the W most recent data for the training process of the ANN. It is
assumed that there exists a certain time period of N time units during
which the model performs the training process i≤N times. Thus, the
period of the training process is T =N/i, i∈ [1, . . . , N ]. For convenience,
the frequency domain is considered. Let F = [1/N, 2/N, . . . , 1] denote the
set of possible frequencies for the training process. Hence, the prediction

model has to choose a frequency f ∈F which performs the training
process in a computationally efficient and accurate way.

Let Sf denote the payoff experienced by the prediction model with
regards to the accuracy of the results when the training phase is held
with frequency f ∈F. It is considered that payoff Sf is monotonically
increasing with respect to f . Unfortunately, the training process also incurs
a computational overhead Cf which is also monotonically increasing with
respect to f . It is expected that as the frequency f increases, the training
process is held more often, providing a more up-to-date prediction model
and, thus, more accurate results, at the expense of a higher computational
overhead.

Given the payoff Sf concerning the accuracy of the prediction model
with respect to the training frequency and the corresponding computational
cost Cf , the net utility of the model is defined by

Uf =
Sβf

C1−β
f

(1)

where β ∈ [0, 1] represents the tradeoff coefficient. For a choice of β = 0,
the prediction model cares only about the computational cost, while for a
choice of β = 1, the prediction model cares only about the accuracy of the
results. In the following, the utility Uf is used as a figure of merit in order
to find the optimal frequency f∗ for the training process that offers both
prediction accuracy and computational efficiency.

Dynamics of Training Process: The evolutionary game theoretic concept
is now applied to the tradeoff problem formulated above. Consider that the
prediction model consists of a population of agents, each programmed to
use a certain frequency f ∈F for the training process with a corresponding
payoff (i.e. net utility) Uf . If xf denotes the population of agents using
frequency f , then it must hold that

∑
f∈F xf = 1. It is noted that the

relative frequency expressed by xf , represents the probability of the
prediction model to use frequency f for the training process. In the game
under consideration, it is assumed that there are certain periods in which
the prediction model reviews its strategies (i.e. frequencies), and only
those strategies that yield a payoff (i.e. net utility) higher than the average
are favored. If this period is considered small, then the evolution of the
strategies (i.e. frequencies) of the prediction model can be described by
the replicator dynamics equation given by

ẋf = xf (Uf − Ū) (2)

where Ū =
∑
f∈F xfUf is the average payoff (i.e. net utility).

Based on (2), the following theorem concerning the convergence to the
optimal frequency for the training process holds.

Theorem 1: The prediction model performs the training process in
the optimal frequency f∗ with respect to computational efficiency and
accuracy of the results.

Proof: By solving (2), it can be derived that there exist N rest points in
the boundary and a rest point in the interior of the surface

∑
f∈F xf = 1.

Using linearization techniques for calculating the Jacobian matrix at the
rest points of the system and simple block matrices algebra, it can be
derived that only the rest points on the boundary experience non-zero
eigenvalues described, for the k-th equilibrium point, k ∈F, by

λ
(k)
j =

{
Uj − Uk if j 6= k

U1 − Uk if j = k
(3)

for j = 1/N, . . . , (N − 1)/N .
Hence, there exist a training frequency f∗ ∈F, f∗ = arg maxf∈F Uf ,

for which all the eigenvalues have negative real part and, thus, corresponds
to an asymptotically stable equilibrium point. �

Theorem 1 simply states that the prediction model will perform the
training process with a proper frequency that provides both computational
efficient and accurate results. Hence, all suboptimal strategies (i.e.
frequencies) will be eliminated resulting in the optimization of the
functionality of the proposed scheme.

Bifurcation Analysis: In the previous section, it was proven that the
prediction model will perform the training process with an optimal
frequency. In this section, the authors perform a bifurcation analysis of
the tradeoff of the proposed system in order to investigate the dependence
of the optimal frequency f∗ on the coefficient β of (1). Considering β as a
control parameter, the following theorem is derived.
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Theorem 2: There exists a threshold value β(f∗)
thr for each frequency in

F, above which frequency f∗ ∈F becomes the optimal frequency for the
training process. It holds that,

β
(f∗)
thr =


ln

(
Cf∗

Cf∗−1/N

)
ln

(
Cf∗

Cf∗−1/N

)
+ln

(
Sf∗

Sf∗−1/N

) if f∗ 6= 1/N

0 if f∗ = 1/N

(4)

Proof: For an optimal training frequency f∗, it holds that Uf∗ > Uj where
j 6= f∗ ∈F. Using (1) and the monotonic property of Sf and Cf , (4) can
be easily derived. �

Theorem 2 is of great importance as it specifies the threshold values of
β that render a frequency optimal for the training process. The threshold
values expressed by (4) constitute the bifurcation values of the system [8].

Simulation Results: In order to validate the proposed scheme, a Matlab [9]
based simulator has been developed. Assume a weekly time period which
corresponds toN = 7 days, and consider that the normalized payoff Sf for
the prediction accuracy of the model can be described by

Sf =
νf

ν − f + 1
(5)

where ν <−1 depends on the profile of the AP and the corresponding
data used for the training process. The choice of ν reflects the influence
of a more frequent training process on the accuracy of the prediction
model. Specifically, for ν→−1, the payoff Sf experiences a logarithmic
form, and as a result, the increase in the accuracy of the prediction model
becomes less significant for higher training frequencies. On the other hand,
for small values of ν, a more frequent training process has a linear impact
on the payoff Sf . Furthermore, as the training set has a fixed size W , it is
expected that the normalized computational cost can be described by

Cf = f (6)

In Fig. 1, the evolution of the training frequencies is depicted for
β = 0.6 and β = 0.7, with a choice of ν =−1.2. It can be seen how the
tradeoff coefficient β influences the optimal frequency for the training
process. Specifically, it is observed that when the prediction model cares
about the accuracy of the results and the corresponding computational
cost in an approximately similar way (β = 0.6), it chooses the minimum
frequency for the training process. However, as β increases (β = 0.7), the
prediction model cares less about the computational overhead and chooses
a more often training process, and the optimal training frequency increases.
Finally, when the prediction model cares least about the computational
overhead, it uses the maximum training frequency in order to always be
up-to-dated.

The bifurcation values of the system with respect to the optimal
frequencies f∗, are depicted in Fig. 2 for different values of ν. Specifically,
Fig. 2 provides the threshold values of β, above which frequency f∗

becomes asymptotically stable for the system model. It can be easily seen
that as ν decreases, the threshold values of β(f∗)

thr also decrease. In other
words, for a constant β, it holds that when the prediction accuracy payoff
Sf approximates a linear form, i.e. decreases according to (5) (smaller
values of ν), a more frequent training process is required.

Conclusion: In this letter, the tradeoff between computational efficiency
and prediction accuracy for the training process of an ANN-based
bandwidth traffic prediction model was investigated. The authors proposed
a novel scheme that reflects this tradeoff and employed evolutionary game
theory in order to study the stability of the model. The convergence of
the proposed scheme to the optimal frequency for the training process
in terms of prediction accuracy and computational efficiency was proven.
Furthermore, a bifurcation analysis was held and the bifurcation values of
the system were derived, which correspond to the threshold values above
which a frequency becomes optimal for the training process. Therefore, the
proposed scheme provides the guidelines for selecting a proper frequency
for the training phase of network traffic prediction models, and can be used
to support any supervised learning approach.
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Fig. 1. Evolution of frequencies for different values of β and ν =−1.2.
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Fig. 2. Bifurcation values of the system for different values of ν.
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