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Abstract Though the introduction of the new 4th Generation (4G) mobile
access technologies promises to satisfy the increasing bandwidth demand of
the end-users, it poses in parallel the need for novel resource management
approaches at the side of the base station (BS). To this end, schemes that
try to predict the forthcoming bandwidth demand using supervised learning
methods have been proposed in the literature. However, there are still open
issues concerning the training phase of such methods. In the current work, the
authors propose a novel scheme that dynamically selects a proper training set
for artificial neural network prediction models, based on the statistical char-
acteristics of the collected data. It is demonstrated that an initial statistical
processing of the collected data and the subsequent selection of the training
set can efficiently improve the performance of the prediction model. Finally,
the proposed scheme is validated using network traffic collected by real, fully
operational BSs.
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1 Introduction

During the last few years, there has been an increasing demand for wireless
broadband services [1] which necessitates for an access network capable of sat-
isfying high end-user data rates. The introduction of 4G technologies promises
to meet these expectations by offering high capacity, low latency and seamless
mobility [2]. Towards this direction, the convergence of the wireless access net-
work with a passive optical network (PON) at the backhaul has been proposed
in order to avoid the creation of bottlenecks and to facilitate the quality of ser-
vice provisioning [3]. However, such an approach raises new issues concerning
the resource management of the backhaul network.

Traditionally, the commitment of resources has been flat and its main scope
has been to satisfy a worst-case scenario. Unfortunately, this approach, which
is essentially based on overdimensioning, cannot be applicable in 4G networks
characterized by high peak rates, since this may lead to an unnecessary com-
mitment of valuable and costly resources. Thus, novel approaches are required
for the efficient resource management of the backhaul network. These ap-
proaches should take advantage of the special characteristics of the new 4G
networks and also comply with the new trends in communication networks,
such as self-organization [4]. Self-organized networks consist of elements that
are able to monitor their environment, interact with each other and react to
the changes of the environment. In this light, the base stations (BSs) should
be able to monitor their environment, analyze the transferred network traffic,
predict their own needs for resources and proactively request their commit-
ment.

In the literature there are already significant research attempts concerning
the prediction of network traffic [5]-[8]. In [5], the appropriateness of artifi-
cial neural networks (ANNs) for forecasting the bandwidth traffic demand is
shown. In [6], the authors study the prediction of Internet backbone traffic us-
ing wavelet multiresolution analysis (MRA) and an autoregressive integrated
moving average model. In [7], a Pi-Sigma time delay neural network (PSN-
TDNN) is used in order to predict scene changes of a real-time variable bit
rate video in Asynchronous Transfer Mode (ATM) networks. Though the above
works make successful predictions of network traffic, there are no guidelines
about the size of the dataset that should be used for the training phase of the
prediction model, something which implies that all the available collected data
are assumed to be necessary for this process. An attempt towards this latter
direction has been made in [8] where the authors study the network traffic
collected by the National Science Foundation (NSF) and the National Labo-
ratory for Advanced Network Research (NLANR) Measurement and Network
Analysis Group. They use training sets of different size and argue that a small
training set can provide more accurate and computationally efficient results for
their short-term prediction model. However, their approach is problem-specific
and lacks of a unified framework for selecting the proper training set.

In this paper, the authors study the problem of backhaul resource allocation
in 4G networks using ANNs. The proposed scheme consists of an Intelligent
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Agent located at the side of the BS that is responsible for the management
of the BS’s backhaul network resources. The Intelligent Agent monitors the
current network traffic, stores all the necessary data that are later used in order
to predict the forthcoming bandwidth demand, and proactively requests the
commitment of the necessary resources based on these predictions. To enable
this advanced prediction functionality, an appropriate training set is required.
A small training set can result into a prediction model that cannot extend over
new unseen data (underfitting). On the other hand, a large training set can
result into a more accurate prediction model at the expense of a prohibitively
high computational cost. Hence, there is a tradeoff concerning the selection of
the training set for the prediction model. As a result, it becomes apparent that
the proper selection of the training set is of great importance for the efficient
performance of the prediction model. To this end, the authors elaborate on the
impact of the statistical characteristics of the training set on the performance
of an ANN-based prediction model. Specifically, by exploiting the statistical
properties of the collected data, a dynamic training set selection scheme is
proposed which can optimize the performance of traffic prediction models that
are based on supervised learning techniques, such as ANNs. It is demonstrated
that an initial statistical processing of the collected data can efficiently improve
the network traffic prediction model. Finally, data collected from real-life fully-
operational BSs are used in order to validate the proposed scheme. According
to the authors’ best knowledge, there exists no prior work in the literature
providing the necessary guidelines for the efficient selection of training sets in
network traffic prediction models.

The rest of the paper is organized as follows. Section 2 describes the pro-
posed model and the collected measurements. In Section 3, the proposed
scheme is implemented and the experimental results are presented. Finally,
Section 4 concludes the paper.

2 System Model

2.1 Model Description

Consider an Intelligent Agent located at the side of the BS, as can be seen in
Fig.(1), that is responsible for monitoring the BS’s environment and storing
all the necessary data (timestamped network traffic measurements), which
will be subsequently used for the training process of the ANN. Then, based on
this prediction model, the Intelligent Agent estimates the forthcoming needs
for resources and proactively requests their commitment from the backhaul
network. Thus, the significance of the training phase on the performance of
the prediction model becomes apparent.

The Intelligent Agent must select an appropriate set out of the collected
data in order to train the ANN-based prediction model. If the entire set of
data is used for the training process, the resulting computational cost might
be prohibitively high. On the other hand, if a small amount of the most recent
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Fig. 1 The Intelligent Agent at the side of the BS.

data is used as a training set, then the prediction model will not be able to
extend over new unseen data. Hence, there is a tradeoff concerning the size of
the training set.

As a result, the Intelligent Agent should efficiently select the proper train-
ing set. For this reason, a statistical processing of the collected data should
initially take place, and then, based on these results a proper training set, ca-
pable of accurately predicting the forthcoming bandwidth demand, should be
exported. The statistical processing of the collected data will allow the Intelli-
gent Agent to identify the basic characteristics of the network traffic demand
and dynamically select the appropriate training set that provides accurate
prediction results.

In the current work, the authors use the notion of the relative standard
deviation (RSD) so as to depict and exploit the statistical properties of the
collected data. The RSD is a measure of precision regarding the collected data
and is defined as

RSD(%) =
σ

µ
× 100 (1)

where σ is the standard deviation and µ is the average value of the data set.
It is reasonable to expect that, for a network traffic demand pattern, a set
of training data that is characterized by a small RSD experiences a more
consistent behavior and can result into a more accurate prediction model than
a training set with a higher RSD.

Practically, a small RSD for a set of collected data implies that the mea-
surements are averaged around their mean value, while a high RSD refers to
collected data with great variations. The former may correspond, for example,
to busy times in a crowded cell where the bandwidth is shared among all the
subscribers, while the latter may refer to quiet times where a small amount of
subscribers exploits a large portion of the available bandwidth [9].

2.2 Measurements

For the validation of the proposed scheme, a set of data collected by two fully
operational BSs located in Athens, Greece, are used. The BSs support High
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Speed Packet Access (HSPA) connectivity and belong to the largest mobile
operator in Greece. The data consist of 5456 hourly averaged measurements
of downlink and uplink throughput1 and concern partly sparse data expanding
for a period of over one year starting from February 2012.

Intuitively, it is expected that the traffic pattern would experience certain
periodicities, as the bandwidth demand is increased during the rush hours in
the morning and in the evening, while during the night hours it is significantly
decreased. In order to verify the existence of such periodicities, the fast Fourier
transformation (FFT) has been employed. Because of the sparsely collected
data, only a consecutive portion of them has been used for the FFT. Any
missing values of the chosen sample for the Fourier transformation were inter-
polated by averaging either the preceding and the following measurement in
case of only one missing value, or the measurements one week before and one
week after, for the case of a series of missing values. These values were used
only for the Fourier transformation analysis in order to detect periodicities,
and in the subsequent phase of the ANN training, these interpolated values
are omitted.

The collected data and the FFT results are depicted in Fig.(2) and in
Fig.(3) for the downlink and the uplink case of BS1, respectively. Similar
results are also derived for BS2. From Fig.(2) and Fig.(3), it becomes apparent
that there exists a dominant period of 24-hours in the set of collected data.
As a result, the demand pattern of the resources features a daily cycle, which
implies that the behavior of the traffic demand from one day to the following
day can be predicted sufficiently. Apart from the dominant period of 24-hours,
another noticeable period is that of 12-hours and for the downlink traffic there
is also a smaller period of 8-hours.

3 Experimental Results

3.1 Artificial Neural Network Parameters

In the present section, the experimental results regarding the performance of
three different types of ANNs in the network traffic prediction problem and
their dependence on the statistical properties of the collected data are pre-
sented. For comparison purposes, three different kinds of ANNs have been
investigated, namely a multilayer perceptron (MLP) neural network [10], a
general regression neural network (GRNN) [11] and a group method for data
handling (GMDH) neural network [12]. Concerning the configuration of the
ANNs, for the MLP the optimal number of hidden layers was computed and
used, whereas for the GRNN the optimal value for the smoothing parame-

1 The collected data correspond to the aggregated throughput derived by a mixture of
services that varies over time, as requested by the subscribers.
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Fig. 2 Collected data and the fast Fourier transformation for the downlink traffic of BS1.

ter was detected and selected2. For the case of GMDH networks, a 64-order
polynomial was used.

Due to the periodicities experienced by the network traffic demand pattern,
the input data of the ANN-based prediction model have to be time associated.
Thus, the set of input variables (predictors), denoted by x, for the training
set consists mainly of the day and time that the data were collected, while
the output, denoted by y, is the measured hourly-based average bandwidth
demand. Furthermore, special days in the calendar, such as holidays, that may
influence the traffic demand are also taken into consideration. As a result, the
input variable x and the output variable y can be expressed as

x = (D,M,H,DT,Y,SE)

y = BW

where D is the name of the day (e.g. Monday), M is the name of the month,
H is the time of the hour of the day, DT is the sequence number of the day
of the month (e.g. 25), Y is the number of the year, SE is a binary variable
used to designate whether a special occasion exists in the corresponding day
that could possibly influence the demand, and BW is the hourly-averaged
bandwidth demand.

2 In order to calculate the optimal parameters for the MLP case, multiple networks were
built and evaluated using 4-fold cross validation [13], while for the case of GRNN the con-
jugate gradient algorithm was used.
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Fig. 3 Collected data and the fast Fourier transformation for the uplink traffic of BS1.

Finally, for the validation process of the prediction model, the 10-fold cross
validation [13] technique is employed, whilst the mean absolute percentage
error (MAPE) of the validation process is used as a figure of merit in order to
compare the performance of the different types of ANNs.

3.2 Statistical Analysis of the Training Set

In order to investigate the impact of the statistical characteristics of the train-
ing set on the performance of the prediction model, the authors separated
the collected data into 5 different and equal classes. Each class contains 1091
collected measurements, and the RSD is derived for each one in order to in-
vestigate its impact on the performance of the prediction model. These classes
were used to build the prediction model and the results of the validation pro-
cess are depicted in Fig.(4) and in Fig.(5) for BS1 and BS2, respectively, for
both the downlink and the uplink traffic.

From these figures, it becomes clear that there is an evident dependence of
the MAPE of the prediction model on the statistical properties of the training
set, i.e. the RSD. Specifically, it can be seen that, when the collected data are
more dispersed around the mean value, i.e. a high RSD is experienced, the
performance of the prediction model degrades, which corresponds to a high
MAPE. On the contrary, when the data are more gathered around the mean
value, i.e. RSD is low, the MAPE of the ANN-based prediction model is small.
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Fig. 4 Mean absolute percentage error (MAPE) for three types of ANNs and the corre-
sponding relative standard deviation (%RSD) for the downlink and the uplink traffic of BS1,
for different training sets.

Furthermore, it becomes apparent that all of the three types of ANNs follow
the trend of the RSD. Moreover, it is evident that the GRNN model is more
robust to the changes of the statistical properties of the training set, and yields
more accurate results than the other two ANNs. Hence, these properties, in
conjunction with the general characteristics of the GRNN [11], render it more
suitable for the implementation of the prediction model.

3.3 Dynamic Training Set Selection

In the previous subsection, it was demonstrated that there is a direct relation-
ship of the RSD with the performance of the ANN-based prediction model.
Thus, the Intelligent Agent should initially process the collected measurements
in order to dynamically export, based on the RSD value, a proper dataset for
the training phase of the prediction model. In order to elaborate more on the
implementation of the dynamic selection phase of the training set, the authors
separated the collected data into 8 classes. Each class i contains the 682·i most
recent data, and for each training set the RSD is calculated. Hence, class 1
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Fig. 5 Mean absolute percentage error (MAPE) for three types of ANNs and the corre-
sponding relative standard deviation (%RSD) for the downlink and the uplink traffic of BS2,
for different training sets.

contains the 682 most recent data, whereas class 8 contains the total amount
of the collected data.

The results for BS1 and BS2 are depicted in Fig.(6) and in Fig.(7), respec-
tively, for both the downlink and the uplink traffic. It can easily be observed
that there is a direct connection of the RSD with the performance of the
prediction model as it was proven in the previous subsection.

From Fig.(6) it is clear that, in general, a smaller training set results in
a lower RSD and a corresponding lower MAPE. Thus, a small training set
suffices to enable the efficient functionality of the Intelligent Agent of BS1. The
same case also holds for the uplink traffic of BS2 as can be seen in Fig.(7).
However, for the downlink case of BS2, a large training set experiences a
smaller RSD and a corresponding lower MAPE. Hence, a larger training set
is more appropriate for this case. As a result, it is not the size of the training
set but rather the value of the RSD that provides a good approximation
(indication) for the expected performance of the prediction model. Thus, the
value of the RSD can be used as a guideline in order to dynamically select
the proper dataset for the training phase.
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Fig. 6 Mean absolute percentage error (MAPE) for three types of ANNs and the corre-
sponding relative standard deviation (RSD) for the downlink and the uplink traffic of BS1,
with respect to the size of the training set.

4 Conclusion

In the current work, the impact of the statistical properties of network traf-
fic on the performance of an ANN-based prediction model was investigated.
To this end, the notion of RSD has been employed to identify the statisti-
cal characteristics of the collected data used as a training set for the ANN.
The importance of an initial statistical processing of the collected data was
identified and a novel scheme that dynamically selects a proper training set
based on the special characteristics of the dataset was proposed. For the val-
idation of the proposed scheme, real data coming from two fully operational
BSs was used. Finally, it was concluded that the RSD metric provides an ex-
cellent guideline for dynamically selecting the optimal training dataset, and it
was demonstrated that a training set consisting of collected data with signifi-
cant fluctuations around their mean value can degrade the performance of the
prediction model. On the contrary, training sets with measurements averaged
around their mean value can provide more accurate results.
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