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Abstract Accurate forecasting of vehicular consump-
tion is a task of primary importance for several ap-
plications. Herein, a vehicular consumption prediction
model is proposed, with special emphasis on robust-
ness and reliability. Both features are enabled due to
the selection of General Regression Neural Networks
(GRNNs) for the implementation of the proposed model.
GRNNs are widely used among neural networks be-
cause of their capabilities for fast learning and suc-
cessful convergence to the solution. In particular, the
designed GRNN is responsible for approximating the
nonlinearities and the specificities between the factors
identified as major contributors in vehicular consump-
tion. In order to evaluate its efficiency, a case study
involving the application of the introduced model in
Fully Electric Vehicles (FEVs) is examined. The perfor-
mance of the proposed model is successfully validated
using real measurements collected during a data ac-
quisition field campaign.

Keywords energy-efficient routing · mesoscopic
consumption model · context-aware prediction · FEV

1 Introduction

With the continuous growth of the transportation sec-
tor, the amount of consumed energy and the volume of
emitted greenhouse gases increase unceasingly. In or-
der to limit the impact of these environmental effects,
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the scientific community responded with the devel-
opment of eco-driving and eco-routing systems (Bori-
boonsomsin et al 2012; Kamal et al 2011). The term
’eco-driving’ refers to systems that validate a posteri-
ori the incurred vehicle consumption rate and provide
valuable feedback to the driver on how to reduce it.
Eco-routing systems, on the other hand, include sys-
tems that generate a priori the least ’harmful’ routes
from an environmental perspective and suggest them
to the driver as alternatives. Considering this functional
difference, it appears that the development of eco-routing
systems is less straightforward than the development
of eco-driving systems. The performance of eco-routing
systems depends mainly on their efficiency in accu-
rately predicting the consumption or the emissions along
the potential routes towards the desired destination.

Our intent in this paper is to provide an innova-
tive model for accurately forecasting the amount of en-
ergy required to travel along a road segment. In par-
ticular, we propose the adoption of a learning method
for the implementation of the forecasting functional-
ity, exploiting the knowledge contained in previously
collected travelling experience. As part of our research
work, we have designed a General Regression Neu-
ral Network (GRNN) algorithm to use as the learn-
ing model and we have carefully formulated the set
of forecasting variables. Both of these features distin-
guish our model from previously presented solutions.
More specifically, the former provides to our model the
abilities of fast learning and successful convergence
to the solution, rendering, thus, the forecasting pro-
cess faster and more accurate, whereas the latter en-
hances our model’s robustness. Indeed, the inclusion
of an extensive set of parameters as forecasting vari-
ables enables the optimal adaptation of the model’s
estimation process to the prevailing contextual condi-
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tions (e.g. traffic conditions, weather conditions etc.).
Apart from this, both of the aforementioned design
choices are consistent with the aim of developing a
model suitable for integration as part of an on-board
eco-routing system.

The remainder of this paper is organized as fol-
lows: Section 2 concisely reviews the existing vehicu-
lar consumption estimation models. Section 3 presents
the proposed prediction model. Section 4 analyzes the
problem under investigation, justifies the selection of
the model’s input parameters and reveals the charac-
teristics of the collected measurements. Section 5 ana-
lyzes the significance of the selected features in the de-
veloped model, and presents comparative evaluation
results for the proposed model as well as for a refer-
ence model currently applied in routing systems. Sec-
tion 6 discusses the extracted results and draws con-
clusions.

2 Literature review

Several techniques have been proposed so far for ve-
hicular consumption estimation. Depending on the level
of detail that the existing models incorporate in their
calculations, they can be classified into macroscopic,
mesoscopic or microscopic approaches. Moving from
macro- to micro-scopic approaches the attention to de-
tail grows (replacing averaged values with instanta-
neous ones), without, however, ensuring a proportional
improvement in terms of prediction accuracy. On the
contrary, the achieved accuracy is not always consis-
tent with the required amount of computational re-
sources. All these parameters should be considered and
evaluated before choosing a specific type of consump-
tion model.

A macroscopic approach for predicting fuel con-
sumption indices in diverse environments that employs
a back-propagation neural network is presented in (Wu
and Liu 2011). In order to facilitate car manufacturers
in designing energy-efficient vehicles that are compli-
ant with emissions standards, Wu and Liu (2011) de-
veloped a learning model that forecasts the fuel con-
sumption rate indices in city, highway or combined cy-
cles based on certain vehicle characteristics, i.e. engine
type, car weight, vehicle class and transmission type.
Although the learning capacity of this model is ver-
ified, such a model would not perform efficiently in
case of an eco-routing system, where context-specific
consumption rates are observed (as opposed to static
average values). The aforementioned approach is fur-
ther enhanced in terms of time and accuracy perfor-
mance by replacing the back-propagation neural net-
work with a radial basis function neural network (Wu

and Liu 2012). Another macroscopic, non-iterative al-
gorithm for estimating the fuel consumption of vehi-
cles is presented in (Ben Dhaou 2011). This algorithm
uses Willan’s internal combustion engine model (Pach-
ernegg 1969) and requires no instantaneous values of
speed or acceleration. The efficiency of the proposed
algorithm has been verified against measurement re-
sults generated for the following three cycles: motor
vehicle expert group (MVEG-95), European driving cy-
cle (ECE), and extra-urban driving cycle (EUDC).

A research tool implementing a mesoscopic approach
is presented in (Minett et al 2011). The proposed tool
generates synthetic speed profiles based on historical
link speed data already stored as digital map attributes.
These speed profiles are then used as the basis for esti-
mating the fuel costs per road segment. The generated
speed profiles and the corresponding fuel cost estima-
tions are validated against field test data. Yao and Song
(2013) attempts to establish a series of mesoscopic mod-
els for light-duty gasoline vehicles, mid-duty diesel ve-
hicles, and heavy-duty diesel vehicles separately, based
on data collected by a portable emissions measurement
system under actual driving conditions. The proposed
models consider the influence of the vehicle speed, ac-
celeration and other driving conditions on the vehicle
consumption and they are described as functions of
average link speed. Furthermore, Yao and Song (2013)
proposes the formation of a database that is filled with
dynamic traffic information. This information is pre-
dicted based on a historical database combined with
real-time road traffic information collected from a probe
vehicle system and it is used as input in the proposed
models. Thus, the proposed models estimate the road
segment fuel consumption factor that expresses the amount
of fuel required per travelled distance.

Alternatively, a context-specific mesoscopic approach
is considered in (Boriboonsomsin et al 2012), where
the authors propose a multivariate regression model,
based on vehicle characteristics, roadway characteris-
tics, traffic characteristics and other explanatory vari-
ables, for concurrent prediction of both energy con-
sumption and gas emissions. Even though the reported
validation results suggest a reasonable estimation per-
formance, a regression-related random error due to un-
explainable causal factors is identified. In order to over-
come such limitations, we suggest in our work the use
of a model employing robust learning techniques for
predicting vehicular consumption. Due to the learn-
ing model’s inherent capability of identifying the com-
plex patterns and nonlinearities underlying the rela-
tions between the factors that determine a specific vari-
able, we advocate (and prove) that such a model presents
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outstanding performance in the problem under con-
sideration.

Three instantaneous fuel consumption and emis-
sion models are evaluated in (Silva et al 2006), namely
EcoGest (Silva et al 2006), Comprehensive Modal Emis-
sion Model (CMEM) (Scora and Barth 2006) and the
Advanced Vehicle Simulator (ADVISOR) (Brooker et al
2003). These models were selected because they are ca-
pable of simulating different vehicles and can account
for cold start effects, air conditioning use, and road to-
pography. A key conclusion is that these models are
more capable in estimating the variation in fuel con-
sumption and gas emissions attributed to fluctuation
in engine power demand than the variation caused by
other factors. Thus, the measured accuracy in the ex-
amined case studies is limited within 10% to 20%. An-
other study presented in (Ahn and Rakha 2008) demon-
strates comparison results between the micro-models
CMEM and VT-Micro (Ahn et al 2002) and a macro-
scopic emission estimation tool (i.e. MOBILE6 (EPA
2002)). In particular, authors highlight the variations in
the instantaneous fuel consumption rates as estimated
by the VT-Micro and CMEM models, the deficiency
of macroscopic environmental tools (i.e. MOBILE6) to
capture them and their significance especially when
determining the trip emissions.

Several studies can be found also in the literature
that describe microscopic models predicting the brake
specific fuel consumption (BSFC) values (i.e. the rate
of fuel consumption divided by the power produced).
Kara Togun and Baysec (2010) develop an explicit arti-
ficial neural network based formulation to predict torque
and BSFC of a gasoline engine in terms of spark ad-
vance, throttle position and engine speed. The evalu-
ation process is based on experimental measurements
and verifies the efficiency of the proposed model. An-
other neural network based model is presented in (Uzun
2012). The suggested model’s predictions are based on
engine speed, load and Crankshaft Angel (CA) and
they are found to be consistent with the corresponding
experimental results. Despite the fact that such mod-
els demonstrate sufficient performance results, further
calculations are needed in order to render the estimated
BSFC values usable to eco-routing systems.

Following a macroscopic approach in order to build
an energy consumption prediction model suitable for
integration as part of an on-board eco-routing system
would not be adequately efficient, as such models ig-
nore valuable transient vehicle behaviour along a route
and present inferior performance. Following a micro-
scopic approach, on the other hand, would provide
impractical instantaneous consumption information ob-
tained after consuming valuable processing resources

and time. Therefore, we propose a model that adopts a
mesoscopic approach and estimates the vehicular con-
sumption on a ’per road-segment’ basis. The introduced
model differs from the rest of the mesoscopic models
reported previously since it considers a wider range
of factors contributing in energy consumption and it
follows a novel approach in identifying the relations
amongst the considered factors. In particular, the list
of the selected factors is not limited to historical link
speed data (Minett et al 2011) and to driving condi-
tions (Yao and Song 2013), but it is expanded with the
inclusion of contextual parameters describing the traf-
fic context, the road geometric characteristics, the weather
context and the driver profile. Furthermore, the pro-
posed model outperforms the previously reported con-
sumption prediction models because its core function-
ality is based neither on rigid mapping techniques (Minett
et al 2011) nor on error-prone multivariate regression
techniques ((Boriboonsomsin et al, 2012)). On the con-
trary, the proposed model implements a learning tech-
nique that is capable of generating forecasts properly
adapted to any contextual change and of adequately
identifying all the nonlinearities underlying a complex
process (like the vehicular energy consumption pro-
cess). These advantages of the introduced approach
are further analyzed and evaluated in the following.

3 Prediction Model

The introduced model is an approximator of a func-
tion f that represents the non-linear physical mech-
anism underlying the vehicular consumption process
( f : C→ R) and, thus, calculates the energy to be con-
sumed for travelling through a road segment based on
the current value of the contextual parameters affect-
ing the vehicular consumption.

The learning model selected for the representation
of the consumption function f is the GRNN (Specht
1991). It constitutes a memory-based network that is
capable of providing estimations for continuous vari-
ables (like the vehicular consumption) and converging
to nonlinear regression surfaces (such as the surface of
the mechanism under consideration). A major benefit
of designing and developing a GRNN is that it can ad-
equately learn from experience using only a fraction of
the training samples needed in case of other learning
models (e.g. back-propagation (Rumelhart et al 1986)).
Therefore, the required training dataset can be gener-
ated after performing just a few passes through the
corresponding road segment. Moreover, GRNN does
not converge to poor solutions corresponding to lo-
cal minima of the error criterion (as sometimes hap-
pens with iterative learning techniques) and it learns
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Fig. 1 GRNN architecture

in one pass through the data, thus enabling general-
ization from examples as soon as these are stored.

The structure of the applied GRNN (Fig. 1) con-
sists of the input units, the pattern units, the summa-
tion units and the output unit. In the input layer, one
neuron for each predictor variable is assigned with the
task of standardising the input values. These standard-
ised values are then being fed to the neurons of the first
hidden layer (pattern layer), which has one unit per ex-
emplar (record) contained in the training dataset. When
presented with the normalised value of the input −→c ,
each pattern neuron computes the Euclidean distance
of that value from the stored vector (representing the
exemplar) and, then, applies the Radial Basis Function
(RBF) kernel function. The resulting values are passed
to the two summation neurons, i.e. the numerator and
the denominator summation units. The denominator
summation unit adds up these weight values, while
the numerator summation unit performs a dot prod-
uct between the vector formed by these weight values
and the one composed of the signals from the pattern
units. The output unit, finally, divides the outputs of
the summation units and yields the desired consump-
tion estimate. According to the structure of the applied
network, the proposed model is described with the fol-
lowing equations:

f̂ (−→c ) =
∑n

i=1 Yiexp(− D2
i

2σ2 )

∑n
i=1 exp(− D2

i
2σ2 )

(1)

D2
i = (C− Ci)T(C− Ci) (2)
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Fig. 2 Choosing the smoothness parameter σ

where −→c is the input vector containing the instance
of the contextual parameters that determine vehicular
consumption, (Ci, Yi) is the ith exemplar (represent-
ing the input-output set of the ith training sample), n
is the number of training samples, Di is the distance
between the ith exemplar and the input vector −→c , and
σ is the smoothness parameter determining the influ-
ence range of the RBF kernel.

Choosing the smoothness parameter σ is crucial for
the performance of the developed model. Specht sug-
gests in (Specht 1991) the use of the holdout method to
select the proper value of σ. For a series of distinctive
values of σ, the holdout method consists in removing
one sample at a time from the training dataset and con-
structing a network based on all of the other samples.
Then, the constructed network is used to estimate Y for
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the removed sample. The process is repeated for each
sample in the training dataset and the mean-squared
error between the actual values Yi and the correspond-
ing estimations Ŷi is finally calculated. The value of σ
giving the smallest mean-squared error is proposed by
the holdout method as the proper σ.

Fig. 2 presents the curve of the calculated mean-
squared errors vs. the σ values. It seems that the small-
est error can be achieved for a range of σ values be-
tween 0.40 and 1.20. Considering that large values of
σ result in smoothing out noisy data, while smaller
ones allow the estimated regression surface to be as
nonlinear as required to approximate more closely the
training samples and that the problem’s input space
is highly nonlinear, the selection of a small σ value is
more appropriate. Thus, based on the presented curve
the value σ = 0.4 is finally selected.

4 Measurements

In case a vehicle was moving from point A to point B
inside an isolated environment, then the calculation of
the vehicular energy consumption would be straight-
forward. Indeed, the consumed energy would be equal
to the energy required to move an object of equiva-
lent mass from point A to point B, a problem that is
already solved using the law of Physics. Considering
the complexities dominating both in existing road net-
works and in manufactured vehicles, however, such
an approximation is not applicable. Modern vehicles
are equipped with additional electric subsystems (e.g.
heating system, wipers) that contribute not only in driv-
ing safety and user comfort but also in vehicular con-
sumption. In addition, as the engine and the power-
train system degrade with usage, a part of the con-
sumed energy that cannot be determined is transformed
into losses. For example, in case of Fully Electric Vehi-
cles (FEVs), the nonlinearly degrading performance of
the battery either during a single charge cycle or dur-
ing its whole life is responsible for such indirect losses.
This type of vehicle related constraints, which affect
energy consumption calculations, constitute a group
of contextual parameters that in this study is called Ve-
hicle Context.

Apart from the Vehicle Context parameters, a series
of other important external factors (not related to the
vehicle itself) affect also the vehicular consumption.
To start with, the vehicular consumption is changing
depending on the morphology of the travelled road
(e.g. the consumption rises when moving uphill). Such
characteristics together with all the limitations and rules

imposed on users of the road infrastructure by road
operators and traffic engineers (e.g. speed limits) form
the so called Road Context. Additional influence on the
travelling vehicle’s consumption is caused by the pres-
ence of other vehicles. Even in the case of FEVs, whose
engines consume no energy when coming at a stand-
still, heavy traffic conditions usually increase total con-
sumption due to the usage of electric auxiliaries for
a longer time period as well as because of the extra
energy required to start moving after a standstill. The
term Traffic Context is assigned to the parameters de-
scribing the prevailing traffic conditions. At the same
time, the travelling vehicle is exposed to the weather
conditions (e.g. rain, snow etc.), namely the Weather
Context that exists in the area of interest. Finally, the
driver can also be considered as a factor that affects
the energy consuming processes. The term Driver Pro-
file is selected for describing the driving attitude (e.g.
economy driving) adopted by the user.

Thus, five groups of context parameters are iden-
tified and proposed in the present study as contribu-
tors to vehicular consumption, namely the Vehicle Con-
text, the Traffic Context, the Road Context, the Weather
Context and the Driver Profile. After searching for ap-
propriate delegates from each group, i.e. parameters
that adequately describe the corresponding contextual
state and are retrievable by on-board navigation sys-
tems, the model’s contextual input vector ended up
with the following structure:
−→C = (hb, lb,−→s aux,wv, td, tmo, thr,θrs,κrs, T, RH, c̄d) (3)

where hb and lb are the battery’s state-of-health (SoH)
and state-of-charge (SoC), respectively,−→s aux is the vec-
tor describing the status of the vehicles electric auxil-
iaries, wv is the vehicle’s weight, td is the current day
of the week, tmo is the current month, thr is the cur-
rent hour band of the day, θrs is the slope of the road
segment, κrs is the class of the road segment, T is the
ambient temperature, RH is the relative humidity, and
c̄d is the driver’s average consumption rate calculated
by the vehicle’s trip computer.

The characteristics of the selected delegates are fur-
ther analyzed in Table 1. SoH and SoC are selected
due to their ability to determine the battery’s nonlinear
performance. Both of these parameters are provided
by the FEV’s battery management system (BMS) that
is responsible for monitoring and controlling the oper-
ation of the vehicle’s battery pack. It should be noted
that the BMS also estimates the incurred energy con-
sumption after applying the proper calculations to the
monitored values of voltage (V) and current (I) (

∫
time

V×

I). The vector of electric auxiliaries’ status (−→s aux) rep-
resents in a comprehensive manner the operational sta-
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Table 1 Contextual parameters

Group Parameter Value range Source
battery SoH (hb) 0..100% BMS
battery SoC (lb) 0..100% BMSVehicle Context
electric auxiliaries status (−→s aux) vector of strings vehicle microcontrollers
weight (wv) > 0kg user input

day of the week (td) Mo..Su on-board system’s internal clock
Traffic Context month (tmo) Jan..Dec on-board system’s internal clock

hour band of the day (thr) (00:00-01:59)..(22:00-23:59) on-board system’s internal clock

road slope (θrs) -100..100% digital mapRoad Context
road class (κrs) (freeway, arterial, collector, local road) digital map

ambient temperature (T) −30..70oC on-board sensorWeather Context
relative humidity (RH) 0..100% on-board sensor

Driver Profile avg. consumption rate (c̄d) > 0Wh/km trip computer

Table 2 Elements of the vector of electric auxiliaries’ status

Parameter Value
Lights off-position-driving-high beam
Heating off-low-mid-high
Air-conditioning off-low-mid-high
Radio off-on
Wipers off-low-mid-high

tus of the vehicle’s electrical components (Table 2) that
contribute into vehicular energy consumption. Mod-
ern vehicles are equipped with several microcontrollers
that manage the operation of such components and
provide all the relevant information (e.g. their opera-
tional status or potential failures). The vehicle weight
(wv) is another important parameter that has a direct
influence on vehicular consumption and includes both
the net weight and the weight of any load (e.g. pas-
sengers, luggage). Today weight sensors are not very
popular in vehicles, nevertheless it is assumed that the
user can easily enter a rough estimation of the vehi-
cle’s load (number of passengers, number of pieces of
luggage) into the system running on-board.

The Traffic Context, i.e. the traffic conditions on a
particular road segment at a specific time slot, can of-
ten be retrieved from traffic information providers, i.e.
third-party service providers that monitor specific parts
of the road network, collect traffic data through ad-
vanced (Jianming et al 2012) or traditional techniques
(Ki 2011), aggregate them and issue traffic reports based
on the performed analysis. In the present study, the pe-
riodicity of the traffic conditions is captured by inte-
grating into calculations the time-frame when the ve-
hicle travels across the road segment. Thus, consider-
ing that a periodic trend can be detected in traffic con-
ditions on a monthly, weekly or daily basis, the Traffic

Context is described by the corresponding parameters
(Table 1).

There are road characteristics that have a direct in-
fluence on vehicular consumption (e.g. road slope) and
others that affect the vehicular consumption in an in-
direct manner (e.g. road class). More precisely, it is ob-
vious that the vehicular consumption increases when
moving on roads with higher slopes (more power is
needed to overcome vehicle’s inertia) or when travel-
ling at very high speeds (road class defines speed lim-
its on a particular segment). Both characteristics, i.e.
the road slope and the road class, are usually stored
as metadata of commercial digital maps and, there-
fore, can be easily retrieved by on-board navigation
systems.

Although in qualitative terms the influence of the
Weather Context on vehicular consumption can be eas-
ily understood, the development of the corresponding
model is not straightforward. In case the weather con-
ditions are characterized by low temperature and in-
creased humidity, the user is forced to turn on sev-
eral electric auxiliaries (e.g. wipers and heating) and
to cause an overhead in vehicular consumption. Con-
currently, the fact that the vehicle must travel in lower
speeds due to safety reasons contributes into lower ve-
hicular consumption, which might compensate for the
usage of electric auxiliaries. In another case when the
weather conditions are characterized by high temper-
ature and low humidity, there could be an increase in
vehicular consumption as the battery performance might
deteriorate and the air-conditioning system might be
switched on for cooling. These examples reveal the im-
portance of considering the Weather Context as a con-
tributor in vehicular consumption. They also reveal that
the use of a deterministic model is not generally pos-
sible for vehicular energy consumption prediction and
that a learning model is more appropriate instead due
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Fig. 3 Field trials’ area (Chieri, Turin)

to the uncertainty of how exactly each parameter af-
fects the final outcome (energy consumption level). For
the Weather Context, the parameters of the ambient tem-
perature and relative humidity have been selected in
the present study, and can be easily retrieved from on-
board sensors as well as by parsing weather informa-
tion available on Internet websites.

The fifth group of context parameters, namely the
Driver Profile, refers to a subjective concept called the
user’s driving attitude that describes the user’s aggres-
siveness in driving and the user’s adaptability in dif-
ferent contextual instances (e.g. driving on wet or dry
road). Thus, the Driver Profile is detected as one of the
determinants of vehicular consumption. As the user’s
driving attitude is not fixed and evolves over time based
on accumulated experiences, driving skills or even mood,
the Driver Profile should be considered each time the
vehicular consumption is estimated. Having all these
in mind we concluded that the average consumption
rate calculated by the vehicle’s trip computer is a proper
indicator of the Driver Profile. Indeed, the vehicle’s trip
computer calculates continuously the vehicle’s current
average consumption rate based on the latest consump-
tion measurements, while the divergence between this
calculated average consumption rate and the average
consumption rate reported in the vehicle’s specifica-
tions reveals the user’s current driving attitude (e.g.
if the trip computer reports an average consumption
rate that is considerably higher than the one antici-
pated from the manufacturer’s specifications, then the
user can be assumed to have a more aggressive driv-

Table 3 Nido EV specifications

Characteristic Value
Type City Car 2 seats
Electric drive Rear
Measurements (L/W/H) 2950/1620/1507 mm
Acceleration 0-60 km 4.4 sec
Top speed 120 km/h
(limited electronically)
Range fully charged 140 km
Weight empty 840 kg
Engine Permanent magneto synchronous
Max power output 60 kW
Peak torque to wheels 90 Nm
Drive batteries Li-Ion batteries
Rated voltage 350 V
Rated capacity 22 kWh
Charge time 8 hours
Battery weight 150 kg

ing style, whereas a more energy-efficient driving style
may be presumed in case that the opposite holds).

In order to render the proposed model functional, a
data acquisition campaign was carefully planned and
conducted using a FEV. The employed FEV was devel-
oped by the Italian car designer and manufacturer Pin-
infarina (Pininfarina 2013). The specifications of this
vehicle (named Nido EV) are depicted in Table 3. It
should be stated that this vehicle is equipped with a
regenerative braking system, i.e. an energy recovery
mechanism capable of converting vehicle’s kinetic en-
ergy into electric energy during breaking. The amount
of recovered energy is measured as negative current
(I < 0) consumption by the BMS and this is taken im-
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Fig. 5 Relative frequency distribution of contextual parameters’ values recorded during the data acquisition campaign (Road Context
and Weather Context)

plicitly into account during the energy consumption
calculation (

∫
time

V× I). During this road campaign, which

took place in the town of Chieri (Turin, Italy) (Fig. 3),
the FEV travelled approx. 1275km and gathered data
for training the distinctive consumption models of 2436
road segments. The collected data were recorded by an
on-board small form factor computer connected both
to external sensors (i.e. GPS, temperature and humid-
ity sensors) and to the vehicle’s controller area net-
work bus (CAN-bus) socket. The connection to the CAN-
bus socket is realized through a commercially avail-
able tranceiver (Vector 2013), providing access to the
BMS’s, the vehicle microcontrollers’ and the trip com-
puter’s data (Table 1).

The performed road campaign was not totally ran-
dom but was rather based on a predefined plan. Ac-
cording to this plan, the FEV would travel during spe-
cific time windows through certain parts of the town
without needing to follow any specific route. Our pur-
pose was to form an adequate training dataset (con-
taining the most representative exemplars) in a short
period, considering that the majority of the selected
contextual parameters (Table 1) cannot be controlled

and that the availability of resources is limited. The
satisfaction of these prerequisites is depicted in the rel-
ative frequency distribution diagrams of the selected
features that were produced based on the training dataset
(Figs. 4 & 5).

Fig. 4 presents the relative frequency distribution
of the contextual parameters belonging to the Vehicle
Context, the Traffic Context and the Driver Profile. The
relevant information is provided for all contextual pa-
rameters except for part of the Vehicle Context, namely
the frequency distribution information regarding the
battery SoH, the air-conditioning status, the radio sta-
tus and the vehicle weight are missing. The reasons
for this are as follows: the battery SoH presents an in-
significant change during the short-period data acqui-
sition campaign, the air-conditioning was not used due
to low environmental temperatures, the specific test
vehicle is not equipped with a radio, and the changes
of the vehicle weight are negligible (the same driver
was always employed with no additional passenger
or luggage during the tests). The relative frequency
distribution of the rest of the contextual parameters,
namely the ones belonging to the Road Context and the
Weather Context are depicted in Fig. 5. Fig. 6, on the
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Fig. 6 Relative frequency distribution of the energy consump-
tion’s values recorded during the data acquisition campaign

other hand, presents the relative frequency distribu-
tion of the energy consumption’s values recorded dur-
ing the data acquisition campaign. The negative con-
sumption values correspond to measurements recorded
while travelling downhill and are due to energy recu-
peration incurring while breaking. To sum-up, Figs. 4-
6 provide a complete and thorough overview of the
training dataset collected on-road.

5 Experimental Results

The first road campaign was dedicated to the gener-
ation of the training dataset. Based on this dataset a
series of GRNN models capable of forecasting the en-
ergy consumption across the visited road segments are
produced. Before proceeding to the validation of the
forecasting models, we attempt to quantify the con-
tributions of the predictor variables in the network.
Several methodologies have been developed for de-
termining the significance of input parameters, usu-
ally called ”the importance of variables”, in case of
artificial neural networks (Olden et al 2004). The ”in-
put perturbation” method initially described by Scardi
and Harding Jr. (1999) is applied in the present study.
As expected, according to the results of this method,
which are depicted in Fig. 7, the parameters of the ve-
hicle weight, the battery SoH, the air-conditioning sys-
tem and the radio are insignificant in the developed
model. Such a conclusion was anticipated consider-
ing the distribution of the intensities of these features
that were recorded during the data acquisition cam-
paign. More specifically, the vehicle weight was almost
the same, the health of the brand new battery was al-
most intact, the air-conditioning system was not used
at all, and there was no radio equipment on-board.
However, these features should not be discarded in
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Fig. 8 The change of energy consumption incurred on multiple
hour bands

the general model, because their significance could be
substantial in the general case (e.g. in other tests or in
commercial applications).

The most significant parameter, on the other hand,
is the parameter ’hour band’. In order to study the
change in energy consumption against the change in
that parameter we generate the three line graphs de-
picted in Fig. 8 based on a subset of the monitored
samples of three distinctive road segments. Although
the displayed graphs present some trends (higher con-
sumption values during rush hours and lower con-
sumption values during night), the changes in energy
consumption values cannot be attributed solely to the
change in hour-band as the selected samples present
differences in other contextual parameters too. Such
differences are expected when the collection campaign
is performed in a real road network, namely in an un-
controlled environment that does not allow the enforce-
ment of any restrictions or rules. Table 4 reports the
details of the samples forming the line graph of the
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Table 4 Recorded contextual instances referring to ”road segment 1” (slope=0.4%, class=’local road’)

hour band energy cons SoH SoC electric aux (lights/ weight day month temp humi avg cons rate
(Wh) (%) (%) heat/airc/rad/wip) (kg) (oC) (%) (Wh/km)

00:00-01:59 6.71 97 84 driv/mid/off/off/off 923 We 10 13 67 135
02:00-03:59 4.51 97 77 driv/low/off/off/off 923 We 10 12 84 128
04:00-05:59 5.82 97 63 driv/mid/off/off/off 923 We 10 10 85 123
06:00-07:59 6.53 97 42 driv/low/off/off/off 923 We 10 14 67 125
08:00-09:59 48.72 97 99 off/off/off/off/off 923 Tu 10 16 69 194
10:00-11:59 12.77 97 59 off/off/off/off/off 923 Tu 10 16 69 171
12:00-13:59 9.75 97 47 off/off/off/off/off 923 Tu 10 16 69 152
14:00-15:59 10.97 97 18 off/mid/off/off/off 923 Tu 10 5 69 152
16:00-17:59 8.65 97 82 off/mid/off/off/off 923 Thu 10 1 58 144
18:00-19:59 13.83 97 69 driv/low/off/off/off 923 Thu 10 10 75 158
20:00-21:59 13.21 97 55 driv/low/off/off/off 923 Thu 10 10 82 158
22:00-23:59 8.97 97 32 driv/off/off/off/off 923 Thu 10 12 89 134

Fig. 9 Comparative diagram of the estimation error for the proposed GRNN model and the reference model

segment called ’road segment 1’ and reveals their dif-
ferences.

A second road campaign took also place in the same
area using the same FEV. The purpose of the latter cam-
paign, which spanned approx. 551km, was to perform
the validation of the proposed model, i.e. to travel through
a random set of validation routes and to record the
incurred energy consumption together with the cor-
responding contextual parameters. The recorded real
consumption values were, then, compared, firstly, against
the ones estimated by the trained GRNNs, and, sec-
ondly, against the ones estimated by a reference model.

As a reference model for comparison purposes we
have considered a model that estimates the vehicular
consumption per road segment based on the segment

length and the vehicle’s average consumption rate (per
kilometer). The value of the average consumption rate
can be defined by the car manufacturer either through
field tests specified by relative standards (e.g. (SAE 2012))
or through advanced consumption models (Wu and
Liu 2011). In the present study, we consider the av-
erage consumption rate that occurs dividing the bat-
tery’s rated capacity with the vehicle’s nominal range
(22kWh ÷ 140km ≈ 157Wh/km). The values used are
the ones provided by the manufacturer in the vehicle’s
specifications (Table 3). Unfortunately, there are no fur-
ther details available on the method followed for the
vehicle’s range estimation.

Based on the collected measurements, the perfor-
mance indicators of the proposed and the reference
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Table 5 Performance indices based on the collected measure-
ments

Model MPE MAPE
GRNN model 1.62% 3.96%
reference model -66.07% 189.59%

model are generated (Table 5). The mean percentage
error (MPE) of the proposed model is 1.62%, which
means that it is rather unbiased, while the mean ab-
solute percentage error (MAPE) is 3.96%. On the other
hand, the MPE of the reference model is -66.07% (se-
vere negative bias, i.e. underestimation of the energy
consumption) and the MAPE is 189.59%. This means
that our model achieves an improvement for the MPE
of more than 50 times over the reference model, and of
more than 45 times for the MAPE. Furthermore, by un-
derestimating the amount of energy required to reach
the desired estimation might cause energy shortage prob-
lems, especially in the case of FEVs.

To further analyze our findings, we have constructed
a comparative diagram (Fig. 9), where the horizontal
axis represents a series of distinctive validation traces
(i.e., different validation routes performed in different
contextual conditions) and the vertical axis represents
the percentage error of the corresponding predictions
performed by the two separate models. Due to page
size restrictions the vertical axis range is limited up to
±100% and the diagram depicts only a fraction of the
validation results (the estimation errors of 44 traces).
According to this diagram, the proposed model pro-
vides only few estimations deviating more than ±10%
from the real values, in contrast to the reference model,
where a significant number of traces exceed even the
range of±100%. The superiority of the developed model
is justified by the fact that, unlike the reference model,
it can predict more accurately both any potential neg-
ative consumption (i.e. the FEV may generate energy
while braking) as well as any deviation in consump-
tion when travelling through the same route in differ-
ent contextual conditions (e.g. different traffic condi-
tions).

6 Conclusion

An innovative learning-based context-aware approach
to the problem of forecasting a vehicle’s consumption
along a probable route is discussed in the present pa-
per. The contextual parameters that contribute into ve-
hicular consumption are identified and proper dele-
gates are selected for the model implementation. The
learning functionality of the proposed model is im-
plemented through a specifically-designed GRNN, a

tool that has been found to be suitable because of its
fast learning ability and due to its capability of conver-
gence in a reasonable regression surface using a lim-
ited number of samples.

In order to validate the developed model, a road
campaign was conducted using a properly equipped
FEV. The testing FEV travelled along several routes
and collected measurements both for training the model
and for validating its performance. The reported train-
ing results demonstrate the significance of the selected
contextual parameters, while the validation results es-
tablish the reliability of the developed model. Indeed,
the measured average estimation error of 3.96% proves
that the proposed model is quite accurate and provides
reliable forecasts. In addition, the proposed model out-
performs an existing reference model that was used for
comparison, as the measured average estimation error
of 3.96% is found to be approx. 45 times better than the
corresponding error of the reference model. This dis-
crepancy is attributed to the inability of the reference
model to sense the environment (context-unawareness)
(e.g. it estimates the same value of energy consump-
tion for two road segments of equal length regardless
of their inclination, traffic or weather conditions, etc.)
and to perceive the energy recuperation incurred while
braking. On the contrary, by implementing a learning
mechanism (i.e. a GRNN), the proposed model is capa-
ble of incorporating the current contextual conditions
in its energy consumption estimations and of dealing
with negative values of energy consumption (i.e. val-
ues originating from regenerative breaking). Hence, these
findings establish the robustness of the proposed model
against the reference model.
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