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Abstract: Eco-driving assistance systems encourage economical driving behaviour and support 
the driver in optimizing his/her driving style to achieve fuel economy and, consequently, 
emission reductions. Energy efficiency is also one of the most pertinent issues related to the 
autonomy of Fully Electric Vehicles (FEVs). This paper introduces a novel methodology for 
energy efficient routing, based on the realization of dependable energy consumption 
predictions for the various road segments constituting an actual or potential vehicle route, 
performed mainly by means of machine-learning (ML) functionality. This proposed 
innovative methodology, the functional architecture implementing it, as well as demonstrative 
experimental results are presented in this paper.  
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1. Introduction 
Eco-driving is a widely known mechanism used to promote fuel (and, generally, energy) 
efficiency through the use of driver behaviour feedback [1]-[2]. The efficiency of such 
systems has been, recently, enhanced through the adoption of vehicle-to-vehicle and vehicle-
to-infrastructure (V2X) technologies [3]-[4], and the consequent exploitation of information 
regarding the state of surrounding vehicles and road conditions. These on-trip eco-assisting 
systems have been, recently, complemented by the “Eco-Routing” concept; described as a 
pre-trip feature that produces route-based energy consumption estimations between an origin 
and a destination, while searching for the optimal route solution that minimizes the total route 
energy consumption [5]. It is argued that systems supporting Eco-Routing could be an 
advantageous addition to existing eco-driving feedback mechanisms by providing preemptive 
route-based energy consumption estimations, therefore contributing to an overall improved 
driving behaviour. The results of the survey performed in [6] strengthen this perspective, as it 
is reasoned that the majority of European car drivers welcome the deployment of both pre-trip 
and on-trip eco-assistance systems. 
This paper introduces a novel approach for energy efficient routing that is based on 
experience collection and on the application of ML methodology [7], which can be integrated 
in modern Advanced Driver Assistance Systems (ADASs). In Section 2, an overview of the 
scientific state-of-the-art is presented. Section 3 discusses the formulation of the proposed 
solution, while Section 4 proposes an appropriate system architecture. A prototype was 
further developed, based on this architecture, in order to perform appropriate validation tests. 
The results of these tests are reported and analyzed in Section 5. Finally, Section 6 
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summarizes the achievements described in the present paper and concludes with future work 
plans. 
 
2. State-of-the-art 
The effects of route choice in reducing fuel consumption and emissions consists an issue 
addressed by several authors. In [8], the impact of digital map attributes on the calculation of 
an eco-route is investigated through the development of a research tool in which historical 
link speed data are used as a basis for replicating vehicle speed profiles, enabling the 
calculation of fuel costs per link. Results show that it is worth taking into account map 
attributes for the generation of synthetic speed profiles. In [9]-[10], the authors propose an 
ecological route search system that advises drivers on fuel-minimizing routes. The ecological 
route search system consists of both fuel consumption prediction technology and route search 
technology. The first step was to build a fuel consumption model, as this is essential for 
performing an ecological route search. The results from this model were compared with actual 
fuel consumption for different traffic conditions and geography. The fuel consumption model 
proposed in [11] considers also the same consumption explanatory variables; i.e., geography 
is considered in estimating the actual power needed to overcome driving resistance of each 
link and traffic is considered through the link travel speeds and the congestion 
volume/capacity ratios. This set of explanatory variables is further populated in [12], where 
the authors also consider vehicle and driver characteristics for fuel consumption estimation. 
However, as stated by the authors, there is an upper limit in their estimation accuracy due to 
the error aggregated during the construction of their model. 
In [5], [13]-[14], [15]-[17], field experiments were conducted and a wide range of models 
(macroscopic, microscopic, mesoscopic) were applied to evaluate the impact of route 
selection in terms of emissions and energy use, over several case-studies. The majority of 
these studies have concluded that route choice has a significant impact on both emissions and 
energy use. On one hand, certain studies point out that time minimization paths, often, also 
minimize energy use and emissions [10], [15], while, on the other hand, some other research 
activities have demonstrated that, frequently, the faster alternatives cannot be considered as 
best from the environmental perspective [8], [13]-[14]. 
All these considered, the present paper provides a valuable addition to the scientific and 
technical state-of-the-art, since: (i) It describes a new ML based methodology for energy 
consumption prediction, based on actual consumption experience accumulated by the vehicle 
in an ongoing manner. In contrast, most of previous relevant research studies have typically 
relied on the definition and verification of consumption models (sets of equations), as 
opposed to actual experience and learning. (ii) The exploitation of context information is 
carried out through learning, and not through a deterministic, equation-based manner; having 
the advantage of being able to better infer hidden consumption patterns that are otherwise 
complex to detect and represent through sets of equations. (iii) Focus is given on the energy 
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consumption prediction and eco-routing of FEVs, while previous research has typically 
concentrated on internal combustion engine vehicles. 
 
3. Machine-Learning for Energy Efficiency Routing 
This paper proposes an alternative way to extend the default range of a FEV (as defined by its 
manufacturer), by selecting the most energy efficient route. Assuming that the driver wants to 
travel from the origin point O to the destination point D, there are |ROD| possible routes 
connecting these two points. The amount of energy required to travel the route OD ODr R∈  is 
calculated by the function en(r). Our goal is to find the optimal route OD

OPTr  that involves the 
minimum energy consumption while travelling from O to D: 

( ) { }min ( )|OD OD OD
OPT OPTen r en r r R= ∈          (1) 

The road network can be represented by a digraph G={V, S, w} where V is the set of the road 
network junctions, S is the set of the road segments (delimited by consecutive junctions) and 
w is the table of the costs assigned to these road segments. Herein, we assume that there is no 
cost or utility associated with the vertices of the network. As a result, the energy consumption 
of a route can be further decomposed as the sum of the energy consumption needed to travel 
through each road segment si(rOD) of the route rOD: 
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where N(rOD) returns the number of elements in set rOD. Furthermore, the energy consumption 
needed to travel through a road segment can be considered as the sum of two factors. The first 
factor (enT) is the expected part of the energy consumption that can be predicted based on the 
previous knowledge of the amount of energy needed to cross this road segment and on the 
current context (c0). The second factor (enR) is the energy overhead due to unexpected traffic 
events that may occur at time t0. Based on this assumption, equation (2) can be further 
analyzed as: 
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According to this analysis, the problem at hand is formulated as an instantiation of the famous 
shortest path problem (eq. (1)). Several efficient algorithms have been proposed for solving 
this problem; thus, the present paper does not envision to work on altering these algorithms. 
Instead, this paper’s contribution -partially described in formal terms by equation (3)- is about 
a new approach in estimating the energy consumption costs that are associated with the road 
segments of a route under investigation. The proposed approach intends to take into account 
all factors that affect the energy cost associated with a road segment, by integrating the 
influence of both expected and unexpected factors. By being able to reliably predict the total 
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energy costs of individual road segments, it is then possible to find the optimal route based on 
existing shortest path algorithms (e.g., Dijkstra, Bellman-Ford). 
This paper does not elaborate on the estimation process of the contribution of the unexpected 
traffic events on the energy consumption (enR). Specifically, the percentage of the energy 
consumption that can be attributed to expected conditions is significantly larger than the part 
related to unexpected traffic events (trial results presented in Section 5 indicate that this 
percentage is approximately 87%). It can also be assumed that the value of the unexpected 
part can be estimated and made known by a third party Traffic Information Provider. Such an 
estimation mechanism can be implemented in a manner similar to that for detecting travelling 
time deviations. A central traffic information system may process energy and travelling time 
“exception” reports received from travelling vehicles. In particular, in case a vehicle detects 
an overspending of energy after passing through a road segment (i.e., an actual expenditure on 
the segment significantly higher than the predicted one), it raises an exception with the 
overspending quota. The statistical processing of the quotas (at the central traffic information 
system) corresponding to a particular road segment may reveal the existence or not of a traffic 
event and their values can provide an estimation of the additional energy required. The 
following analysis, however, focuses mainly on developing a mechanism suitable for on-
board installations and efficient in accurately estimating the expected part of the energy 
consumption (eq. (3)). 
Trying to analyze the factors that determine the expected energy consumption of a vehicle 
while travelling through a road segment, five vectors of context variables can be identified as 
the major contributors to the consumed energy, namely the Vehicle Context (cV), the Weather 
Context (cW), the Traffic Context (cTr), the Road Segment Context (cS), and the Driver Profile 
(cDr). Vector cV describes the vehicle characteristics that seriously affect the energy 
consumption, like the ones reported in Table 1. Vector cW includes the weather metrics that 
have an impact on the consumed energy, such as temperature and humidity. Regarding vector 
cTr, a number of methodologies have been developed [18]-[19], in order to quantify the traffic 
status being encountered on a road segment in a specific time slot. The study of the observed 
traffic volume on a specific road segment (after removing the effects of unexpected traffic 
events) versus the time usually reveals the existence of a periodic trend. In order to take this 
traffic periodicity into account, we identify several time slots (Monday-Sunday, from 00:00 to 
24:00 o’clock, January-December) and we consider the Traffic Context at a particular time 
point as an unknown function of the corresponding time slot. Vector cS includes the 
characteristics of the road segment affecting the energy consumption in a direct (slope, traffic 
lights) or indirect manner (speed limit, number of lanes). Finally, regarding cDr, the metric of 
the actual average consumption (which can be retrieved from the vehicle’s trip computer) is 
used to describe the dependency of the energy consumption on the driver’s profile. This 
metric is suitable for revealing the user’s driving attitude (more or less aggressive) when 
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compared to the corresponding average consumption (nominal) value provided by the 
vehicle’s manufacturer. 
Full identification of the relations and dependencies among these five groups of context 
variables is probably impossible to reach. As an indicative example, in the case of the Vehicle 
Context, the use of electric auxiliaries, like the heating system or the windshield wipers, affect 
the energy consumption. The use of these auxiliaries implies the existence of a specific 
Weather Context, i.e. low temperature and high humidity (rain). Such a Weather Context, in 
turn, usually implies that vehicles move in low speeds for safety reasons and that the driver’s 
attitude becomes less aggressive. Another indirect effect of such a context is the occurrence of 
traffic congestion, which depends also (although not exclusively) on the class of the road 
segment (e.g. highway, urban street, or other type of road segment). This example 
demonstrates in a comprehensible way some of the complex relations that exist among the 
variables of the context vectors defined above. 
It becomes obvious that the identification and modeling of the aforementioned relations and 
dependencies, so as to build an efficient and accurate mathematical formula, is not 
straightforward. Thus, this paper proposes the application of ML functionality for predicting 
the energy costs of the various road segments constituting an actual or potential vehicle route 
(candidate segments). ML algorithms are capable of automatically detecting patterns or 
regularities that underlie in a complex process like the energy consumption estimation.  
ML functionality is applied through the use of so-called “Machine-Learning Engines” 
(MLEs). The operation of these engines typically consists of two steps: the learning or 
training process, and the scoring or decision process. During the first step, the MLE is 
provided with a set of historical data so as to “learn” how to produce reliable predictions for -
yet unseen- situations. 
Based on this analysis, the prediction function of the expected energy consumption (eq. (3)) 
could be expressed as: 

0 0 0 0 0( , ) ( , , , , )T T i T iE en s en s= = V W Tr Drc c c c c       (4) 

Term cS is taken implicitly into account through term si (denoting the road segment 
identification in a map database) so it is omitted from the function parameters. What we need 
is to feed a MLE with the appropriate dataset (si, cV, cW, cT, cDr, ET) and train it, so as to 
identify the process enT(). Table 1 provides an analysis of the variables of the contextual 
vectors of eq. (4), while Table 2 depicts a small part of an example dataset with field 
measurements. 
 

Table 1. Analysis of the employed contextual variables 
Vector Variable Abbreviation Type Range 
cS Road segment ID LinkId (si) Unsigned integer >0 
cV Battery State-of-Health SoH Integer 0…100% 
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Battery State-of-Charge SoC Integer 0…100% 
Battery Capacity Capacity Integer >0Wh 
Battery Technology Technology String e.g. Li-Ion 
Lights Lights String off-park-low-

high 
Heating Heat. String off-low-mid-high 
Air-conditioning Airc. String off-low-mid-high 
Radio Radio String on-off 
Wipers Wipers String off-low-mid-high 
Motor’s maximum 
power output 

maxPowerOutput Integer >0kW 

Vehicle mass plus load 
weight 

Weight Integer >0kgr 

cW 
 

Temperature Temperature Integer -30...50oC 
Humidity Humidity Integer 0…100% 

cTr 
 

Weekday Weekday String Mo…Su 
Time Band Time Band String (00:00-01:59) …  

(22:00-23:59) 
Month Month String Jan…Dec 

cDr Average vehicle 
consumption as reported 
by the trip computer 

Avg. Consumption Numerical >0Wh/km 

 Road segment energy 
cost 

Recorded 
Consumption 

Numerical (Wh) 

 

Table 2. Training dataset example 
Instance attributes 

LinkId SoH SoC Capacity Techno- 
logy Lights Heat. Airc. Radio Wipers maxPower-

Output Weight 

565534258 95 98 21500 Li-Ion off off off off off 60 1070 
539099812 95 98 21500 Li-Ion off low off off off 60 1070 

…            

 
 Target attribute 

Temperature Humidity WeekDay Time Band Month Avg. Consumption Recorded Consumption 

3 65 Mo 08:00-10:00 Dec 150 57.278 
3 65 Mo 08:00-10:00 Dec 158 12.754 

…       

 
Our intention is to build a robust and autonomous prediction system suitable for on-board 
systems. Having this in mind, we need to optimize the ML functionality so as to be efficient 
for on-board installations, i.e. in systems with limited memory and computational resources. 
An important step towards this approach is to minimize the dataset parameters without losing 
any important information. This also helps decrease the training and scoring times of the 
MLEs. For scalability reasons, we propose the deployment of a MLE per road segment 
instead of having a MLE for the entire road network. The benefits of adopting this approach 
focus on the reduced size of the required dataset, since less training data are needed, and on 
the increased accuracy of the energy cost predictions, as the underlying process of a dataset 
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corresponding to a specific road segment is of lower complexity than the one corresponding 
to a road network. Additionally, no specific knowledge on the particular characteristics (e.g. 
inclination, geometry, etc.) of road segments is needed, since a different MLE is used for each 
segment. An unavoidable requirement of the proposed approach is the additional space 
needed to store the various MLEs. However, scalability studies on this topic have shown that 
the effect on storage is manageable [20]. Therefore, equation (4) can be expressed as: 

, 0 0 0 0( , , , )
iT T sE en= V W Tr Drc c c c       (5) 

It has been explained that the training process of a specific MLE takes place on-board. But 
how is the corresponding dataset generated? In case the vehicle travels regularly over a 
specific road segment, the dataset may easily be populated with measurements retrieved by 
the on-board system. If the vehicle has not passed through the road segment before, the 
dataset may be populated with measurements retrieved by other vehicles and shared indirectly 
(with the mediation of a central synchronization server) through Vehicle-to-Infrastructure and 
Infrastructure-to-Vehicle communication.  

Table 3. Terminology 
Term Explanation 

ET,N 
Normalized Energy Cost Factor, i.e. a cost factor that corresponds to the energy cost of a particular road segment and 
can be used directly by vehicles of different characteristics (e.g. engine type, air drag coefficient, purpose of usage etc.). 

,
ˆ
T NE  Predicted Normalized Energy Cost Factor. 

ET Actual Energy Cost. 
ˆ
TE  Predicted Actual Energy Cost. 

λ 

The lamda factor represents the relation between the monitored energy cost of a vehicle and the corresponding energy 
cost of a standard vehicle driven by a driver with “neutral” driving attitude, namely the Normalized Energy Cost. The 
term “neutral” refers to a reference stylized driving speed pattern as defined by the European standard New European 
Driving Cycle (NEDC). NEDC consists of an urban part called ECE, which is repeated four times, and an extra-urban 
part, the EUDC (Extra-Urban Driving Cycle) [21]. 

MLE Machine-Learning Engine. 

 
In order to enable the sharing of experiences between vehicles of different characteristics, a 
complementary normalization scheme, based also on ML functionality, is proposed. This 
presents the advantage that parameters containing somewhat privacy-sensitive information 
(such as part of the Vehicle Context cV or the Driver Profile cDr) do not need to be shared. For 
this purpose, a normalization MLE is generated and used to transform the energy consumed 
by a vehicle on a road segment (denoted as ET) into a normalized (neutral) energy cost factor 
(denoted as ET,N). The various road segment MLEs are trained so as to produce reliable 
predictions about the road segments’ normalized energy cost factors ( ÊT ,N ). Whenever such a 
prediction is performed by a MLE, a “reverse” process must subsequently follow, 
transforming the predicted normalized energy cost factor into the corresponding predicted 
actual energy value ( ÊT ). The normalization/denormalization procedures are based on the use 
of the lamda factor (λ) defined in Table 3.  
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In order to support the normalization/denormalization process, the Vehicle Context (cV) may 
be analyzed in the following sub-groups of context variables: 
• Battery State (cbs), which includes the SoH and the SoC. 
• Battery Type (cbt), which includes the capacity and the technology. 
• Electric Auxiliaries (caux), which includes variables that describe the electric auxiliaries’ 

status. 
• Vehicle Type (cvt), which consists of the maxPowerOutput and the weight.  
Taking this categorization into account, by adopting the proposed normalization scheme 
equation (5) can be replaced by the following set of equations: 

( ), , 0 0 0 0, , ,
iT N T sE en= W Tr aux bsc c c c    (6) 

0 0 0
ˆ ( , , )normλ = Dr vt btc c c     (7) 

! := ET
ET ,N

     (8) 

Equation (6) is derived from equation (5) after transferring some contextual parameters 

( )0 0 0, ,Dr vt btc c c  to equation (7), which, in turn, estimates the lamda factor. The lamda factor is 

used for converting the actual energy values into the normalized ones (during the experience 
collection process used for training) and the inverse (during the energy costs estimation 
process used for routing). The benefits stemming from the proposed normalization scheme 
are: Firstly, the sharing of experiences is enabled, and user privacy is better protected as 
exchanged measurements are depersonalized. Secondly, the volume of the exchanged 
measurements is reduced. The same reduction applies also to the required on-board storage 
capacity, as the volume of stored experiences is decreased. Finally, the segmentation of the 
initial procedure in successive calculation stages facilitates the efficient use of the limited 
processing and memory resources available in on-board computer systems.  
 
4. Machine-Learning Routing System Architecture 
The proposed methodology is implemented through a functional architecture comprising four 
main application components: the Prediction System, the Routing Cost Conversion System, 
the ML Factory, and the Training System. The specifications for these components (i.e. 
application functions, application services and interfaces that they realize or make use of) are 
presented in detail in the following (using the Archimate 2.0 modeling language [22]). 
Figure 1 provides the specifications for the Prediction System, which is responsible for the 
ML-based prediction of a road segment’s energy cost. In particular, it retrieves the 
corresponding MLE via the Machine-learning engine extraction service (see also Figure 3), 



9 

as well as the current context via the IContextInfo interface. The application feeds the context 
to the MLE and returns the predicted energy cost. 

 

Figure 1. Prediction System 

Figure 2 provides the specifications for the Routing Cost Conversion System, which is 
responsible for converting actual energy costs of road segments into normalized values, and 
vice versa. This application comprises two sub-components, namely the Normalization 
System and the Denormalization System, whose functionality has been explained in Section 3. 
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Figure 2. Routing Cost Conversion System 

Figure 3 provides the specifications for the ML Factory, which is responsible for retrieving 
the corresponding MLE upon request, or for producing a new one in case there is yet no MLE 
associated to the road segment in question. For this reason, this application first checks if the 
requested MLE already exists in the Machine-Learning Engine database. If such engine 
exists, it means that it has been produced at some time in the past, and so it is returned. 
Otherwise, the particular road segment does not yet have any MLE associated to it. In this 
case, the application produces a stub engine, stores it and returns it to the requestor. 
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Figure 3. ML Factory 

Figure 4 provides the specifications for the Training System, which is responsible for 
performing the MLEs’ training. Periodically, the MLEs need retraining, since new historical 
data are being recorded. This application is also responsible for performing the scheduling of 
training sessions. For this reason, its functions are grouped internally into two sub-
components, the Training Scheduler and the Training Execution Module. The first one 
implements the training policies (e.g. perform training when battery level is above a 
threshold, or during specific time windows, etc.) and initiates training or retraining based not 
only on the availability of new data (retrievable through the ISynchInfo interface), but also on 
the frequency or probability that these segments will be visited by the user. This is the reason 
why the application makes use of the driving history data archive and of the external 
Electronic horizon service. After making this decision, the application may initiate the 
training of the chosen road segments (i.e., subsequently, of the chosen MLEs, retrieved via 
the Machine-learning engine extraction service). The execution of the training itself, on a 
particular MLE, is handled by the second application sub-component, which must also make 
use of the IHdbIO interface, for retrieving the corresponding historical data.  
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Figure 4. Training System 

 
5. Experimental Results 
This section presents the experimental results generated during a field trial campaign that took 
place in Chieri (near Turin), Italy. The study of these results aims at validating the proposed 
ML methodology used for predicting energy consumptions. The experimental setup includes: 
• an ADAS prototype equipped with 3G connectivity as well as with the proposed ML 

functionality, implemented in C++. 
• a FEV equipped with a Controller Area Network (CAN) bus interface. The test FEV is 

powered by a battery of 21.5kWh and has a nominal range of 140km. 
• a CAN bus adapter: The equipment used is CANcaseXL [23]. 
• the test area, extended in a region of about 6x6km, comprises the town of Chieri (Figure 

5) and its suburbs. This area is suitable for tests, since it contains a meshed road network 
including segments with a variety of characteristics, in terms of speed limits, slopes, 
number of lanes, road class, etc., and presenting variable traffic conditions during the day. 
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Figure 5. Test Area (Chieri, Italy) 

A 4-week data collection campaign was performed with the test FEV, in order to generate an 
adequate dataset, i.e. representative of different sets of contextual conditions, for training the 
MLEs. A specific parking lot was selected as the starting point of each trip. The FEV started 
each time with a fully charged battery and returned when the SoC was approaching a critical 
level (after travelling for about 100-140km). Each trip was followed by a recharging process 
lasting from 8 to 10 hours and then a new cycle started. 
 

Table 4. Contextual data sources 
Source Connectivity Variables measured 
Vehicle microcontrollers Wired through CAN 

bus interface 
Electric auxiliaries’ status, avg. consumption 

Internet web services 3G Temperature, humidity 
Configuration file Local maxPowerOutput, weight, capacity, battery technology 
Battery Management 
System (BMS) 

Wired through CAN 
bus interface 

SoC, SoH, instantaneous voltage and current (used for 
energy consumption cost estimation through 

Voltage
time
! *Current ) 

ADAS internal clock Local Weekday, month, time band 

 
The contextual data collected during the campaign were retrieved through several sources 
(Table 4). After the completion of the data collection campaign, the generated dataset was 
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used to train the MLEs of the road segments that had been visited. The ML method employed 
for this campaign is the Artificial Neural Networks (ANNs). An ANN represents a supervised 
learning algorithm, suitable for regression problems, and features superior performance in a 
wide range of problems according to empirical studies [24]. Regarding the learning process, 
the scaled conjugate gradient algorithm [25] was preferred instead of the traditional gradient 
descent, as it follows a more direct path to the optimal set of weight values. Table 5 contains 
an analytical description of the ANN engines employed by the proposed methodology. The 
training process resulted in a set of 2436 estimation engines corresponding to the road 
segments of the testing area and in one normalization engine.  
 

Table 5. Description of ANN engines 
 Estimation engine Normalization engine 
Architecture multilayer feed-forward with one hidden 

layer 
multilayer feed-forward with one hidden 
layer 

Hidden layer 
activation function 

Logistic  
 

Logistic  
 

Output layer 
activation function 

Linear  
 

Linear  
 

Learning algorithm Scaled conjugate gradient  Scaled conjugate gradient  
Network structure  
(x is computed by an 
optimization process 
applied to each ANN 
separately) 

12-x-1 5-x-1 

Input variables (temperature, humidity, weekday, time 
band, month, lights, heat., airc., radio, 
wipers, SoC, SoH) 

(avg. consumption, maxPowerOutput, 
weight, capacity, battery technology) 

Output variable Normalized value of the road segment 
energy consumption 

λ 

 
The next step of the validation process included the generation of routing results based on the 
previously trained MLEs. Firstly, 80 sets of origins and destinations were selected randomly 
in a way ensuring that the generated routes would be included in the testing area. Then, for 
each of the 80 sets, the fastest and the most energy efficient routes were calculated and driven, 
and the corresponding results (in terms of energy consumption) were extracted. The most 
energy efficient route corresponds to the one proposed by the developed ML algorithm, while 
the fastest one corresponds to the “standard” route as suggested by a typical navigator (Nokia 
HERE [26]). Of course, for each origin-destination pair both the fastest and the most energy 
efficient route were calculated after ensuring the same contextual conditions. Figure 6 
illustrates an example, i.e. the most energy efficient and the fastest routes for the same pair of 
origin (“Strada Madonna della Scala”) and destination (“Via del Ponte Vecchio 15”) points. 
The two generated routes refer to the same contextual conditions (Table 6), while their 
comparison results are presented in Table 7. According to this example, there is a 12.24% 
energy saving in case the FEV follows the energy efficient route, and also a 9.15% loss in the 
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time required to travel from the origin to the selected destination. 
 

  
(a) (b) 

Figure 6. Example of Energy Efficient Routing (a) and Fast Routing (b) for the same 
origin-destination pair and contextual conditions 

 

Table 6. Contextual Instance when generating routes for the example of Figure 6 
CONTEXTUAL CONDITIONS 
Vehicle Context 

SoH 
(%) 

SoC 
(%) 

Capacity 
(Wh) 

Techno- 
logy Lights Heat. Airc. Radio Wipers 

Power out- 
put max 

(kW) 

Weight 
(kgr) 

95 80-90 21500 Li-Ion off mid off off off 60 1070 
Weather Context Traffic Context Driver Profile 

Temperature 
(oC) 

Humidity 
(%) WeekDay Time Band Month Avg. Consumption 

(Wh/km) 

5 74 We 08:00-09:59 Dec 162 
 

 

Table 7. Comparison of the Energy Efficient routing and Fast routing results for the 
example of Figure 6 

 Routing Algorithm Comparison 
Energy Efficient Fastest Energy Efficient vs. Fastest 

Energy Consumption (Wh) 1238.2 1410.95 -12.24% 
Travel Time (s) 732 665 9.15% 
Route Length (m) 8944 9046 -1.13% 
Number of Links 70 82 -14.63% 

 
Comparison results between all of the proposed and the “standard” routes were collected and 
aggregated, and the final outcome can be observed in the diagrams depicted in Figure 7. 
Figure 7 includes a frequency graph (primary axis) and a cumulative frequency graph 
(secondary axis) of the energy savings that were achieved when applying the proposed 
routing scheme. According to these graphs, the routes generated by the proposed scheme are 



16 

always more energy efficient than the corresponding “standard” routes and, therefore, the 
proposed routing scheme can be regarded as fully verified. Furthermore, the achieved energy 
savings are greater than 10% in almost two thirds of the cases, and greater than 15% in half 
(50%) of the cases, which is quite encouraging regarding the efficiency of the proposed 
solution. In general, during the conducted field trials, the energy savings enabled were found 
to be up to 36.88% (compared to the energy spent in the “standard” route).  
 

 

Figure 7. Frequency and Cumulative Frequency diagrams of the Energy Savings 

Energy consumption prediction accuracy: It should be noted that, for non-linear estimation 
models as in the proposed one, the percentage of energy consumption caused by expected 
conditions may be calculated through the statistic metric pseudo-R2 ( !R2 ) [27], which is the 
closest metric to the co-efficient of determination R2 used in linear models.  

     

!R2 =1! i=1

N

! Ei ! ÊT ,i( )
2

i=1

N

! Ei ! E( )
2

 (9)  

where Ei denotes the measured value of the real energy consumption for a particular case i 
(combination of road segment and context), ÊT ,i  represents the corresponding predicted value 
of the expected part of the energy consumption, and E  expresses the mean value of the real 
energy consumption over N different cases. For the aforementioned experimental campaign, 
the pseudo-R2 metric is calculated equal to 87%, meaning that the energy consumption 
attributed to predictable (expected) conditions, which is estimated by the proposed model, 
composes the largest part of the total actual energy consumption. 
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User acceptance: Finally, although the end-user perspective is not the direct focus of the 
present paper, it is worth presenting shortly the outcomes of a relevant survey carried out in 
order to assess user acceptance of the proposed system. Α specifically designed questionnaire 
was prepared and distributed to 35 drivers, who may be perceived as end-users of the system. 
The questionnaire consisted of twenty questions regarding the system’s effectiveness, 
easiness, clearness, comfort, etc. The degree of agreement with each of the statements of the 
questionnaire was expressed using a number from Likert scale. 
 

  
(a) (b) 

Figure 8. (a) System usability results, (b) Issues faced by end-users 

Based on the results of this survey (Figure 8), the system vastly meets user expectations, 
addressing the issues of user comfort and driver efficiency. The percentage of drivers 
disagreeing with the evaluated route (either for reasons of time efficiency or other) ranges at 
low levels, which provides good first indications with regards to user acceptability.  
 
6. Conclusions 
To sum up, this paper presented an innovative methodology for energy efficient routing based 
on ML techniques. By applying these methods, vehicles are rendered capable of learning, thus 
predicting energy consumption along road segments. The proposed techniques together with 
the functional architecture that implements them were discussed in detail, accompanied by 
figures of the main functional blocks, as well as experimental results. Results show that the 
proposed solution succeeds in guiding FEVs through more energy efficient routes, enabling 
energy savings up to 36.88%. Particularly, savings of more than 15% were recorded in half 
(50%) of the test cases conducted in the field. Future work includes a detailed study on 
estimating the unexpected part of the energy needed to travel through a road segment at a 
specific time slot, as well as further field trials of the proposed system. 
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