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Abstract – This paper proposes enhancements to the channel(-state) estimation phase of a 

cognitive radio system. Cognitive radio devices have the ability to dynamically select their 

operating configurations, based on environment aspects, goals, profiles, preferences etc. The 

proposed method aims at evaluating the various candidate configurations that a cognitive 

transmitter may operate in, by associating a capability e.g., achievable bit-rate, with each of these 

configurations. It takes into account calculations of channel capacity provided by channel-state 

estimation information (CSI) and the sensed environment, and at the same time increases the 

certainty about the configuration evaluations by considering past experience and knowledge

through the use of Bayesian networks. Results from comprehensive scenarios show the impact of 

our method on the behaviour of cognitive radio systems, whereas potential application and future 

work are identified.
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1. Introduction

An increasingly important engineering challenge is the proper management of the 

electromagnetic radio spectrum, a valuable yet limited natural resource. The 

current static assignment of the radio spectrum, e.g.,  [1], may lead to 

underutilization situations. Thus, there is need for the development of efficient 

spectrum management schemes, capable of exploiting the available, underutilised

frequency bands.

A direction for spectrum efficiency is to equip the infrastructure with cognitive 

radio capabilities  [2] [3] [4] [5]. In general, cognitive systems determine their 

behaviour, in a reactive or proactive manner, based on the external stimuli 
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(environment aspects), as well as their goals, principles, capabilities, experience 

and knowledge. In this respect, cognitive radio devices dynamically select their 

configurations, through management functionality  [6] that takes into account the 

context of operation (device status and environment aspects), goals and policies

 [7], profiles, and machine learning  [8] (for representing and managing knowledge 

and experience). In the more general sense, the term configuration refers to a 

spectrum carrier and a specific Radio Access Technology (RAT), but the list 

could also be expanded to include modulation type, transmit power etc. This 

definition also allows a spectrum band to be used for operating different RATs, in 

accordance with the flexible spectrum management concept  [5].

A typical cognitive radio operation can be divided into three, tightly 

interconnected, phases (Figure 1)  [3]. In the radio-scene analysis phase the 

respective environment conditions, especially related to spectrum and 

interference, are sensed. During the channel-state estimation phase, channel-state 

information (CSI) is collected and also used to estimate the channel capacity;

moreover, past experience and knowledge can be exploited in this phase. Finally, 

in the configuration selection phase the transmitter decides on the “best” 

configuration, for sending the desired signals, based on the information of the 

previous two phases. This paper aims at complementing and enhancing the 

channel-state estimation phase by proposing a method to integrate knowledge and 

experience in the process, as the term cognitive dictates the need to do so.

In any manifestation, proper mechanisms for channel-state estimation are 

imperative for adaptive, cognitive radio systems operating in dynamically 

changing environments.  Channel-state estimation is needed for calculating the 

channel capacity which, in turn, is required in order to assist the transmitter for 

evaluating its candidate operating configurations. More specifically, the cognitive 

receiver exploits the CSI in order to feed a well known theoretical formula (e.g. 

Shannon theorem) for the calculation of the achievable bit rate. 

This is exactly where the focus of our work is placed on. More specifically the 

objective of this work is to use the calculated bit rate in order to associate each of 

the candidate transmitter’s configurations with an anticipated capability (e.g. in 

terms of achievable bit rate). As long as there is a clear picture about the 

capabilities of each configuration, the transmitter will be able, in a sequent step, to 
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select the optimum one to use. The decision rules governing such selection will be 

subject of our future work. 

In order to increase the certainty about the configuration evaluations, we propose 

and develop a learning solution that integrates knowledge and experience in the 

process and relies on Bayesian Networks, which are a category of advanced 

machine learning schemes, suitable for reasoning about probabilistic relationships

 [8] [9] [10]. Such integration in the channel-state estimation phase can be 

especially important for improving the robustness of the evaluation of the 

configuration capabilities.

The rest of the paper is organized as follows: Related work and motivation are 

presented in Section  2. Our solution is presented in sections  3 and  4. Section  5

provides results from comprehensive scenarios that reveal the behaviour of the 

proposed scheme. Finally, concluding remarks are reached in section  6.

2. Related work and Motivation

At first, our work complements the used channel-state estimation mechanisms. In 

general, channel estimation can be either training-based  [11] [12] or blind 

 [13] [14] [15] [16], with both cases exhibiting pros and cons in terms of bandwidth 

efficiency, convergence speed and estimation accuracy. When it comes to 

cognitive radio, the majority of channel state estimation techniques proposed in 

the literature, regardless of being training-based or blind, assume Orthogonal 

Frequency Division Multiplexing (OFDM)-based systems  [17] [18] [19]. This can 

be easily justified by the fact that OFDM’s inborn features, such as spectral 

efficiency and flexibility, render it a modulation strategy that commends itself to 

cognitive radio  [3], albeit other proposals for the modulation scheme of cognitive 

radio have come since the introduction of the idea  [17].

On the other hand, a cognitive radio will inherently have the ability to improve its 

performance through learning. Learning systems require collection of data from 

the environment sensed, in order to draw conclusions about the observed 

variables. Machine learning techniques such back-propagation Neural Networks, 

Self-Organising Maps, Fuzzy Systems, Evolutionary Algorithms, Case-based 

Systems and of course Bayesian Networks enable such behaviour and can be used 

to optimize the performance by adapting the radio parameters with respect to the 

input variables.
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Especially a Bayesian Network,  [9] [10], is a graphical model that encodes 

probabilistic relationships-dependencies among a set of variables of interest. 

Some of the benefits that Bayesian Networks offer when used for handling input 

data  [20], are the abilities to handle incomplete data sets, to allow learning of 

causal relationships (e.g. causes and symptoms), to use prior knowledge and also, 

to avoid data overfitting  [21] (i.e. when the network adheres to a training data set, 

thus being unable to perform correctly on unseen data). 

Apart from medicine, bioinformatics or economics, Bayesian networks have also 

been used in the engineering literature e.g. for fault detection, self-management or 

automated diagnosis, destined for the application to wireless, cellular networks

 [22] [23] [24], and also for modeling user preferences and profiles in B3G/4G 

devices  [25] [26]. Our work applies Bayesian networks for improving the 

performance of a cognitive radio through learning. In particular, in this paper, we 

formulate a Bayesian Netowrk in order to model the probabilistic relationship 

among the achievable bit rate and corresponding configuration of a cognitive 

transmitter.

3. Formulation as a Bayesian Network

Figure 2(a) depicts the approach for formulating the problem as a Bayesian 

network. As stated, the objective is to associate each candidate configuration with 

a specified capability. In the Bayesian network, random variable CFG represents 

the configuration that is probed, and random variable BR represents a 

configuration’s capability, e.g., the achievable bit-rate as calculated using CSI and 

Shannon’s theorem. CFG is the Bayesian network’s predictive attribute (parent 

node), while BR is the target attribute (node), which can take a set of values from 

a reference set as will be discussed in the following. In a similar manner, although 

a simplified approach with one capability is assumed herewith, more capabilities, 

e.g., the bit error rate, etc., can be considered readily. The method relies on the 

constant update and maintenance of conditional probability values, of the form

[ ]CFGBRPr , which reveal the probability that a capability (in this case the bit-

rate) will be at a certain level, given that a certain configuration is used.

Conditional probability tables (CPTs) can, therefore, be organized. Every node in 

a Bayesian Network has an associated CPT to express the probability of its state 

in condition to its parent states. Figure 2 (b) depicts the structure of the CPTs in 
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our case, with particular focus on the bit rate. Each column of a CPT refers to a 

specific configuration. If there are n possible configurations, the CPT will 

include n columns. Each line of the CPT corresponds to a reference, achievable

bit-rate value. Those reference bit-rates comprise the set, from which random 

variable BR may take values. This set is selected here to be discrete  [24]. Let M

be that discrete set of reference, achievable bit-rate values. Without loss of 

generality, enumeration can be done in ascending order (i.e., 1br < 2br <…< Mbr ). 

The cell at the intersection of line j (1≤ j ≤ M ) and column i (1≤ i ≤ n ) provides 

the value of the conditional probability [ ]ij cfgCFGbrBRPr == , which 

expresses the probability that bit-rate jbr will be achieved, given that 

configuration icfg is selected.

Given a configuration, the most probable achievable bit-rate is the one that is 

associated with the maximum conditional probability in the respective column. In 

order to take into account different contexts (e.g., times in the day) there can be 

several CPTs. Moreover, the CPT can also be maintained as a list, sorted in 

descending order of the probabilities. Figure 2(c) provides an example. 

Configuration and bit rate pairs with high probabilities can be in the top of the list, 

in order to facilitate configuration selections. In the example, bit rate kbr is the 

most probable for configuration icfg .

4. Learning Strategy

4.1 Principles 

The capabilities of configurations are provided by the CPT. This section describes 

how to update the values within CPT, i.e. the learning strategy of the Bayesian 

Network. In order to address the continuously changing environment (received 

data) an online learning strategy is required  [27] [28].

The learning strategy takes into account the bit rate calculations, which are 

conducted using the CSI provided by the channel estimation phase, and more 

specifically, the “distance” (absolute difference) between those calculated values 

and each reference value. Let us assume that, according to the calculations, a 

specific configuration can achieve bit-rate calcbr . This value can be exploited, in 
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order to fine-tune (enhance or decrease) the values of the CPT, and therefore, 

increase the confidence of the capability estimations. 

Let maxdif be the maximum difference between the reference bit-rate values, i.e.

maxdif = Mbr – 1br . Then, the following correction factor, jcor , can be computed 

for each reference achievable bit-rate value jbr :

jcor = 1–
max

-j calcbr br

dif
(1)

It holds that 0≤ jcor ≤1. A value close to one reflects that the corresponding 

reference value jbr is close to the calculated value calcbr , thus the corresponding 

conditional probability value should be reinforced accordingly. The opposite 

stands for a value that is close to zero.

Given a candidate configuration icfg , the correction of the CPT values can then 

be done as follows, for each candidate value jbr :

[ ]
newij cfgCFGbrBRPr == = L  jcor  [ ]

oldij cfgCFGbrBRPr == (2)

Parameter L is a normalizing factor that guarantees that all “new” probabilities 

sum up to one. It can be computed through the following relation:

L ∑
∈Mj

jcor  [ ]
oldij cfgCFGbrBRPr == = 1 (3a)

It can be defined that the proposed learning scheme converges when the 

conditional probability of the reference value, which is closest to the measured 

value, becomes the highest. At this point, the conditional probabilities that 

correspond to the other (candidate) reference values are either being reduced or 

reinforced less.

Convergence can also be defined differently, e.g., it can also be associated with 

the difference between the conditional probability of the value indicated by the 

calculations and all the rest. After convergence to a certain condition, there can be 

a set of measures that may be taken for enabling fast adaptations to future 

conditions. First, the number of consecutive updates, upd , which can be applied 

on the conditional probabilities, may not be allowed to exceed a certain maximum 

threshold, maxupd . Second, the conditional probability of a reference bit-rate value 

may not be allowed to fall under a certain threshold, a / M , where 0≤ a ≤1 (recall 
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that M is the number of reference bit-rates). Third, the number of conditional 

probabilities, which fall under the minimum threshold, a / M , may not be 

allowed to exceed a certain maximum threshold, maxthr . In other words, there 

should be T ≤ maxthr , where T (T ⊆ M ) is the set of probabilities that should be 

assigned equal to the minimum threshold in a certain step of the learning method.

In this case, the normalization factor, L , is computed by requiring all the other 

“new” probabilities to sum up to 1-( T  a / M ). This can be expressed as follows:

L 
( )
∑

∈ TMj
jcor  [ ]

oldij cfgCFGbrBRPr == = 1-( T  a / M ) (3b)

4.2 Algorithm

The following sequence of actions takes place during the channel-estimation 

phase of the cognitive radio process (Figure 3). 

Step 1. Acquisition of CSI knowledge for calculating instant achievable bit rate,

and inspection of whether the learning method is at a convergence stage.

The value, calcbr , is considered. The value derives from the calculations made, for 

configuration icfg , exploiting CSI form the previous step of the channel 

estimation phase of the cognitive radio process. Convergence is identified if the 

following two conditions hold: (i) the calcbr value is the same with that of the 

previous invocation, (ii) the probability Pr calc iBR br CFG cfg    is larger than 

all the rest. In case there is no convergence the variable upd is set to zero, and a 

transition to step 3 occurs. 

Step 2. Inspection of whether further updates of the CPT are allowed, in case the 

channel estimation phase is at convergence stage.

Inspection of whether the number of consecutive updates that can be applied after 

convergence, upd , has reached the maximum threshold, maxupd . If the answer is 

positive, there is migration to step 6. Inspection of whether the number of 

conditional probabilities, that have fallen below the minimum threshold, T , has 

reached the maximum threshold, maxthr . If the answer is positive, there is 

migration to step 6.  

Step 3. Computation of the new probability values.
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Computation of: (i) the correction factor, jcor , through the set of relations (1); (ii)

normalization factor, L , through relation (3a); (iii) new probability values 

through the set of relations (2).

Step 4. Inspection of whether the CPT should be updated. 

Computation of the set, T (T ⊆ M ), which comprises the probabilities that have 

fallen under the minimum allowed threshold a / M . If the number of probabilities 

in the T set exceeds the maximum allowed number, maxthr , i.e., if  T > maxthr , 

there is migration to step 6.

Step 5. Update of CPT. 

If T >0 the following set actions are conducted: (i) The probabilities of the T set 

are assigned equal to the minimum threshold a / M ; (ii) The new normalization 

factor is computed through relation (3b); (iii) the new values of the probabilities 

out of the T set are re-computed through the set of relations (2).

The new probability values (computed in step 3 or above) are stored in the CPT.

In case of convergence, the counter upd (consecutive updates after convergence)

is increased.

Step 6. End.

5. Results

5.1 Set-up

Various sets of scenarios are used for investigating the behaviour of the proposed 

method. More specifically, our focus is on how this learning method, enabled by 

Bayesian networks, influences and enhances the channel estimation phase of a 

cognitive radio process. 

The scenarios concern an arbitrary configuration, denoted as c . It is assumed that 

there are M = 6 reference bit rate values (in Mbps). M includes the values 1br =

6, 2br = 12, 3br = 24, 4br = 36, 5br = 48, 6br = 54. Hence, maxdif =48 Mbps. 

As can be seen, the capabilities of the configuration c have been chosen 

equivalent to those of legacy or emerging standards for wireless local and 

metropolitan area networks. In addition, parameter a , used in 3(b), has been set 

equal to 0.1.
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In order to ensure comprehensive testing, two categories of scenarios will be 

considered. In the first category the assumption is that there is no prior knowledge 

on the capabilities of the configuration. In the second category of scenarios (will 

comprise four sets), it will be assumed that the proposed method has some 

knowledge regarding the capabilities of the configuration. Comprehensiveness is 

ensured by considering, in both categories, the impact of all the potential changes 

from the initial conditions.

5.2 Presentation

Figure 4 depicts the results from the first category of scenarios, in which it is 

assumed that there is no prior information for configuration c . The x-axis denotes 

the discrete time steps during which the channel estimation conducts and provides 

calculations for feeding our method. The y-axis shows the values of conditional 

probabilities of the form, Pr BR b CFG c    , where b can be equal to 6, 12, 

24, 36, 48, 54 Mbps. Figure 4(a)-(f) shows the evolution of the probabilities when 

the bit rate calculations indicate that the configuration can achieve 6, 12, 24, 36, 

48, 54 Mbps, respectively. 

Initially, in each chart, all conditional probabilities are equal

( Pr 0.166BR b CFG c      ), since there is no prior information for 

configuration c . As can be observed, the scheme readily learns the configuration 

capabilities, and converges to the condition indicated by the calculations. These 

remarks are backed up by the fact that the conditional probability, which

corresponds to the calculated bit rate value, immediately becomes significant and,

very soon, larger compared to all the rest. 

For instance, in Figure 4(b) the calculations indicate that the configuration can 

achieve 2br =12 Mbps. Therefore, the probability 2Pr BR br CFG c   

immediately becomes significant (equals to 0.432 and 0.709 after three and ten 

time steps, respectively), and soon is much higher than the rest (e.g. the 

probability for a “neighbouring” bit-rate 1br =6 Mbps equals to 0.289 and 0.186 

after three and ten time steps, respectively). Moreover, the behaviour of the 

probabilities of the bit rates 1br and 3br =24 Mbps should be noted. Initially, they 

are increased, then they remain at a certain high level for an important amount of 

time, and after a point they start being reduced. These bit-rates are “neighbouring” 
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to 2br . Through this behaviour, the channel estimation phase has learned and 

shows that these bit rates (even though less probable than 2br ) are more 

representative of the configuration capabilities compared to 4br , 5br and 6br . As 

can be observed, after three, five, thirteen and twenty-nine measurements, there 

are T =2, 3, 4 and 5, respectively, probabilities that reach the minimum threshold. 

Likewise, in Figure 4(d) the calculations indicate that the configuration can 

achieve 4br =36 Mbps. Therefore, the probability 4Pr BR br CFG c   

immediately reaches high levels and soon becomes larger than all the others. In 

this case, as well, the probabilities corresponding to values 3br and 5br remain at 

high levels for several steps. Within five, eight, thirteen steps there are T =2, 3

and 5, respectively, probabilities that reach the minimum threshold.

Figure 4(e) and (f) display the same behaviour as Figure 4(b) and (a), 

respectively. This is expected since the initial conditions are the same for all cases 

and also the indicated bit-rates are at the edges of the set M , for 6br and 1br

(Figure 4(f),(a)), and near the edges of the set M , for 5br and 2br (Figure 

4(e),(b)).

Next there is the presentation of a second category of scenarios, which comprises 

four sets (two – five) showcased in Figure 5 – Figure 8, respectively. In these sets

there is prior information on the capabilities of configuration c . Specifically, 

different situations from the first scenario will be considered as initial conditions.

Then, it will be assumed that the bit rate calculations during channel estimation 

indicate that the capabilities of the configuration change. The objective is to see 

the behaviour of the proposed scheme.

Figure 5 presents the results from the second set of scenarios. It is assumed that 

the channel estimation phase has learned that configuration c can achieve 6 

Mbps, and moreover that T =2 conditional probabilities have reached the 

minimum threshold. This is the initial condition in this scenario. In other words, 

the initial condition is the one of Figure 4(a), at time step = 2.

Figure 5(a)-(e) show the evolution of the probabilities when the bit rate 

calculations indicate that the configuration can achieve 12, 24, 36, 48, 54 Mbps, 

respectively. Again, in each chart, the x-axis is the time domain, during which 

there are calculations conducted in discrete steps and provided to our method. The 
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y-axis shows the values of conditional probabilities of the form, 

Pr BR b CFG c    , where b can equal to 12, 24, 36, 48, 54 Mbps. 

As can be observed in all cases, the scheme immediately starts to move towards 

the new situation. This is shown by the fact that immediately the conditional 

probability, corresponding to the value indicated by the calculations, becomes 

significant. The fact that there is prior knowledge on the configuration capabilities 

prevents the immediate convergence (which was the case in the first scenario). 

This is a desirable property, for preventing oscillations regarding the estimates of 

the configuration capabilities, which can be due to temporarily changing 

environment conditions, e.g., the temporary disappearance or appearance of 

interferers. Nevertheless, if the change in the environment is not temporary, 

convergence occurs in a few steps, which range from three (Figure 5(a),(b),(e)) to 

five (Figure 5(d)) (3.6 average). 

In the third set of scenarios (Figure 6) it is assumed that during the channel 

estimation phase, the proposed method has learned that configuration c can 

achieve 6 Mbps, and moreover that T =3 conditional probabilities have reached 

the minimum threshold. In other words, the initial condition is the one of Figure 

4(a), at time instant four. The difference of this scenario, with respect to the 

second one, is that there is a “higher level of convergence” to the initial condition. 

This means that more probabilities have fallen under the minimum threshold. The 

question is whether this influences the behaviour of our method, and especially, 

the speed of convergence to the new condition. 

Figure 6(a)-(e) show the evolution of the conditional probabilities when it is 

calculated that the configuration can achieve 12, 24, 36, 48, 54 Mbps, 

respectively. As can be observed, in all the cases of the third scenario the method 

converges to the new condition within few steps. The number of steps ranges 

again from two (Figure 6(e)) to six (Figure 6(c)) (4.0 average). The number of 

steps is slightly increased, compared to the second set of scenarios. 

In the fourth and fifth set of scenarios it is assumed that the initial condition 

indicates that the configuration can achieve 24 Mbps. So the difference with 

respect to the previous two scenarios is that now a “middle” bit-rate value is taken 

as the initial condition.
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In the fourth scenario (Figure 7) the initial condition is that the configuration can 

achieve 24 Mbps and that T =2 conditional probabilities have reached the 

minimum threshold. In other words, the initial condition is the one of Figure 4(c), 

at time step=6. Figure 7(a)-(e) show the evolution of the conditional probabilities 

in case the configuration can achieve 6, 12, 36, 48, 54 Mbps, respectively. The 

remarks that can be drawn from this scenario are similar to those of the second set 

of scenarios. Specifically, the proposed method starts immediately to move 

towards convergence to the new condition; convergence occurs in a few steps 

which ranges from five (Figure 7(e)) to nine (Figure 7(a)) (7.0 steps average).

In the fifth scenario (Figure 8) the initial condition indicates that the configuration 

can achieve 24 Mbps and that T =3 conditional probabilities have reached the 

minimum threshold. In other words, the initial condition is the one of Figure 4(c), 

at time instant eight. Figure 8(a)-(e) show the evolution of the conditional 

probabilities when according to calculations, the configuration can achieve 6, 12, 

36, 48, 54 Mbps, respectively. The behaviour is similar to the previous scenario 

(8.0 steps average for convergence). Also, when the indicated bit-rate is close to 

the initial bit rate (i.e. 2br , 4br (Figure 8(b), (c))), the probability of the 

“neighbouring” bit-rate immediately raises, while all the rest probabilities drop to 

the minimum threshold. Contrarily, when the indicated values are not 

“neighbouring” (see Figure 8(a), (d), (e)), the “middle” values remain at a high 

level for a certain number of time steps, until finally reaching the minimum 

threshold. The results of this scenario also indicate that the “higher level of 

convergence” minimally impacts the overall behaviour and the speed of 

convergence.

5.3 Analysis

In summary, the behaviour of the proposed Bayesian networks’ based method was 

tested in various scenarios, split in two categories. In the first category (Figure 4) 

the assumption was that there is no prior knowledge on the capabilities of the 

configuration. In the first category the method phase readily converged to all the 

situations that can be signalled (calculated) by exploting the CSI from channel 

estimation phase. Moreover, the conditional probabilities of the bit rates, which 

were neighbouring to the bit rate indicated by the calculations, remained at 
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significant levels for a certain amount of time. Therefore, these “neighbouring” bit 

rates appear as second-best representatives of the configuration capabilities.

In the second category of scenarios (Figure 5 – Figure 8), it was assumed that the 

channel estimation phase has learned the capabilities of the configuration. In the 

first set of scenarios of this category, the initial condition was an “extreme” value, 

namely, 6 Mbps (scenario sets two and three). In the second set, the initial 

condition taken was a “middle” value, namely, 24 Mbps (scenario sets four and 

five). In this category, as well, there was comprehensive investigation with respect 

to all the potential alterations that can be signalled, resulting from calculations of 

the bit rates by channel estimation phase (e.g., change from 24 Mbps to all the 

other values).

In the second category of scenarios it was observed that the scheme immediately 

starts to move towards convergence to the new condition. Convergence takes 

more steps compared to the first category. However, it is something positive for 

avoiding the impact of temporary environment changes. In any case, convergence 

happens in a few number of steps. Convergence is slightly faster in case the initial 

condition is an “extreme” value, compared to when it is a “middle” value. The 

“degree of convergence” to the initial condition minimally impacts the speed of 

convergence.

Our proposed method can exploit any legacy, robust channel estimation 

mechanism. Assuming a mechanism is available for that purpose, it has been 

shown that our method can exploit the provided CSI in order to increase the level 

of certainty that a configuration will achieve a specific bit rate. To strengthen the 

importance of this statement, we state that the results of the method can be 

exploited to drive the selection of one of the alternative configurations and thus, 

ensuring that a cognitive transmitter will always optimize its operation.

6. Conclusions

Cognitive radios require machine learning functionality for knowing, with high 

enough assurance, the capabilities of the alternative configurations in which they 

might operate, e.g. the achievable bit-rate. Within a cognitive radio operation, 

channel-state estimation provides significant information (CSI) in order to 

calculate achievable bit rate values and associate them with a probed 

configuration. In this respect, this paper contributes to the enhancement of the 
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channel-state estimation of a cognitive radio process, by proposing a learning 

method based on Bayesian networks. The objective is to increase the level of 

certainty that a specific configuration will achieve a definite bit rate.

The next step of our work is to integrate the proposed scheme of this paper with 

diverse radio scene analysis (environment sensing) mechanisms, as well as 

configuration selection algorithms. For the radio scene analysis there will be 

integration of mechanisms relevant to CDMA and OFDM air-interfaces. For the 

selection phase, a direction that will be pursued is the optimum choice of

configurations for a set or all the cognitive transmitters in an area in accordance to 

the examined capabilities that they can achieve. Both fully-distributed and 

cooperating techniques will be studied. Furthermore, in our future studies we will 

expand our scheme so as to consider and investigate Bayesian Networks with 

more variables and their probabilistic relationships.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: First category (set) of scenarios. The focus is on an arbitrary configuration, for 

which there is no prior information on its capabilities. Behaviour of the proposed method 

when it has learned that the configuration can achieve: (a) 6 Mbps; (b) 12 Mbps; (c) 24 

Mbps; (d) 36 Mbps; (e) 48 Mbps; (f) 54 Mbps.
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(a) (b)

(c) (d)

(e)

Figure 5: Second set of scenarios. Behaviour of the proposed method when the calculated bit-

rate changes from 6 Mbps and  T =2 to: (a) 12 Mbps; (b) 24 Mbps; (c) 36 Mbps; (d) 48 

Mbps; (e) 54 Mbps.
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(c) (d)

(e)

Figure 6: Third set of scenarios. Behaviour of the proposed method when the calculated bit-

rate changes from 6 Mbps and  T =3 to: (a) 12 Mbps; (b) 24 Mbps; (c) 36 Mbps; (d) 48 

Mbps; (e) 54 Mbps. 
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(c) (d)

(e)

Figure 7: Fourth set of scenarios. Behaviour of the proposed method when the calculated bit-

rate changes from 24 Mbps and  T =2 to: (a) 6 Mbps; (b) 12 Mbps; (c) 36 Mbps; (d) 48 

Mbps; (e) 54 Mbps.
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Figure 8: Fifth set of scenarios. Behaviour of the proposed method when the calculated bit-

rate changes from 24 Mbps and  T =3 to: (a) 6 Mbps; (b) 12 Mbps; (c) 36 Mbps; (d) 48 

Mbps; (e) 54 Mbps.


