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Abstract

This paper proposes an alternative approach for determining the most en-
ergy efficient route towards a destination. An innovative mesoscopic vehic-
ular consumption model that is based on machine learning functionality is
introduced and its application in a case study involving Fully Electric Vehi-
cles (FEVs) is examined. The integration of this model in a routing engine
especially designed for FEVs is also analyzed and a software architecture
for implementing the proposed routing methodology is defined. In order to
verify the robustness and the energy efficiency of this methodology, a system
prototype has been developed and a series of field tests have been performed.
The results of these tests are reported and significant conclusions are derived
regarding the generated energy efficient routes.
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1. Introduction

Environmental impact and economic factors impose the need for reducing
the amount of energy spent by a vehicle in order to travel from a source to a
destination point. Minimizing the consumed fuel leads not only to financial
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savings but also to simultaneous reductions in the released emissions, as their
volume is proportional to the vehicles consumption rate [1]. Even in the case
of zero emission vehicles, like Fully Electric Vehicles (FEVs), reducing the
energy consumption contributes into limiting both the travel cost as well as
the environmental impact coming from the generation (in power stations)
and transfer of the energy required for vehicle recharging.

Considering the current progress in the development of energy-efficient ve-
hicles, which achieve low consumption rates by means of aerodynamic shapes,
energy-efficient engines or the use of alternative fuel resources (e.g. FEVs),
further improvements can be enabled through the utilization of information
and communication technologies (ICT). Eco-driving and eco-routing tech-
niques implemented by intelligent transportation systems have been proposed
for enhancing the vehicles energy efficiency. In particular, eco-driving sys-
tems [2, 3] analyze the current status of the vehicle together with consumption-
related parameters and provide valuable feedback to the user in order to mod-
ify his/her driving style and attitude in an energy-efficient manner. Thus,
such systems are quite efficient in reducing a vehicles current energy con-
sumption when following an energy-demanding route (e.g. a route charac-
terized by steep upward slopes), but they do not inform the user beforehand
to avoid (if possible) such routes and to follow better ones [4, 5]. This lat-
ter task, due to its inherent uncertainty, is not as straightforward and is
performed by the so-called eco-routing systems [6, 7].

Eco-routing systems [8] try to identify the most energy-efficient route to-
wards the desired destination based on their estimation about the energy
required to travel along each one of all the possible routes and prevent the
driver from making a bad choice (i.e. selecting an energy demanding route).
The effectiveness, however, of such systems is limited due to the incertainty
of predictions that introduces an amount of error into the calculations. In
addition to this limitation the existing systems cannot be used in case of
FEVs as the FEVs’ peculiarities were not taken into consideration during
their development. Existing eco-routing systems can be effectively applied
only in case of vehicles powered by internal combustion engines. The pro-
posed system aims at tackling both these limitations by implementing an
innovative mesoscopic consumption model that minimizes prediction error
and an advanced routing engine that is especially designed for FEVs.

Such an eco-routing system is proposed in the present paper, enabling the
discovery of the most energy-efficient route towards the destination based on
more accurate energy cost predictions. In order to improve the estimation
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accuracy achieved by existing eco-routing techniques, the proposed system
implements a context-aware learning model. Implementing a learning model
involves defining an appropriate model that comprises a set of parameters and
then optimizing these parameters using past experience [9, 10]. A system-
atic description of the developed learning model and the introduced routing
methodology is presented in the rest of this paper. In particular, Section
2 contains an overview of the existing eco-routing techniques and energy
consumption models developed so far. Section 3 describes in detail the de-
velopment process of the proposed routing methodology and elaborates thor-
oughly on the introduced learning model. A system architecture suitable for
application in FEVs is presented in Section 4. Based on this architecture, a
system prototype is implemented and installed in a FEV so as to perform
a series of field trials. The prototype implementation as well as the field
trials results are reported in Section 5. Finally, Section 6 summarizes the
work described in the present paper and emphasizes on the degree of energy
efficiency achieved by the proposed methodology.

2. Related work

Several studies have investigated the impact of route choices on the energy
consumption and emission rates of vehicles [11, 12, 13, 14, 6, 15, 16]. The
common finding of these studies is that following the fastest path towards
the destination is not always the best choice from an environmental and
energy consumption perspective. For example, comparing the results of a
driving experiment performed in Japan [11], the fuel consumption of the
ecological route is 9% lower than that of the time priority route, while its
travel time is 9% longer. In another experiment performed between the Los
Angeles Airport and the Los Angeles center [12], the least fuel consumption
route is compared against the shortest duration route. According to this
comparison, the least fuel consumption route is 25% more energy efficient
and 8% slower than the shortest duration route. Likewise, the results of
a field trial performed in the Northern Virginia area [13] demonstrate that
significant improvements in energy consumption (18-23%) and air quality
(4-5% reduction in NOx and 20% reduction in CO2) can be achieved when
motorists utilize a slower and 30% longer arterial route instead of a faster
highway route.

Hence, considering the existence of an eco-friendly route as a possible
routing choice, several models have been proposed for finding the path that
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minimizes vehicular consumption. A classification of these models can be
based on the type of the methodology employed for predicting the energy
consumption along all possible paths towards the destination, which enables
their categorization into macroscopic, mesoscopic and microscopic models.

A macroscopic, non-iterative algorithm for estimating vehicular fuel con-
sumption is presented in [17]. The algorithm uses Willan’s internal combus-
tion engine model [18] and needs no instantaneous values of speed and accel-
eration. The efficiency of the proposed algorithm has been verified with mea-
surement results for the following three cycles: motor vehicle expert group
(MVEG-95), European driving cycle (ECE), and extra-urban driving cycle
(EUDC). Another macroscopic emission estimation tool, called MOBILE6,
is utilized in the study performed in [13], and its performance is compared
against that of two microscopic tools, i.e. the VT-Micro model and the com-
prehensive modal emissions model (CMEM). The comparison results of the
study, however, demonstrate that macroscopic tools can produce erroneous
conclusions given that they ignore transient vehicular behavior along a route.

Transient vehicle states are captured by microscopic models like the one
presented in [11]. Authors describe a fuel consumption factor analysis using
Oguchis consumption model and identify five factors as major contributors
in vehicular consumption, i.e. the base consumption, the friction loss, the
altitude change loss, the air drag loss and the acceleration loss. The base
fuel consumption factor refers to fuel used for the inertial resistance of the
engine and the transmission, the air conditioner and some other electric com-
ponents, while the other four factors express energy losses due to the vehicles
movement. The consumption values estimated by the microscopic tool are,
then, fed to a Dijkstra-based [19] routing engine and the most energy-efficient
route is extracted. The driving experiments conducted in areas with dif-
ferent geographical features and in various traffic conditions identified base
consumption and geographic morphology as the dominant determinants of
vehicular fuel consumption.

Apart from deterministic models that are usually based on the laws of
Physics [11], microscopic tools include also models that exploit artificial in-
telligence techniques. The fuel consumption predictive system described in
[20, 21] uses a neural network in order to infer vehicular consumption from
previously collected experience. The inputs of the network include the brand
of the vehicle, the engine type, the vehicle weight, the vehicle class and the
transmission system type, while the output corresponds to the vehicles fuel
consumption rate indices for each test cycle (i.e. city, highway or combined).
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Despite their acceptable performance, microscopic consumption estima-
tion models are quite complex and detailed for application in dynamic route
guidance systems. Building a system whose performance depends on the
continuous retrieval of microscopic parameters (e.g. instantaneous speed,
instantaneous acceleration, or road grade) is not practical, considering that
acceptable accuracy can also be achieved by less complex mesoscopic models.

Mesoscopic models estimate emissions and/or fuel consumption on a link
basis. Their input parameters reflect average values of observable variables
in the context of a time period, e.g. average speed, average acceleration
or deceleration, etc. The mesoscopic research tool presented in [7] gener-
ates synthetic speed profiles based on historical link speed data, stores them
as digital map attributes and uses them for calculating fuel costs per link.
Link travel speeds are also employed in the mesoscopic energy consumption
model of [22] together with the actual power needed to overcome the driv-
ing resistance for each link and with the volume over capacity traffic ratios.
In [23] the authors introduce a dynamic eco-route planning system utiliz-
ing Dijkstras shortest path algorithm and consisting of a power-dependent
consumption model and a dynamic traffic information database. A special
mechanism for integrating the impact of dynamic changes of traffic conditions
on route planning is described in [12]. In particular, the authors propose an
eco-routing navigation system that consists of: a Dynamic Roadway Network
database, which is a digital map of a roadway network that integrates his-
torical and real-time traffic information from multiple data sources through
an embedded data fusion algorithm; a multivariate regression model that
estimates an energy/emissions operational parameter set [fuel, CO2, CO,
HC, NOx] based on vectors of vehicle characteristics, roadway characteris-
tics, traffic characteristics and other explanatory variables; a routing engine,
which contains shortest path algorithms used for optimal route calculation;
and a user interface that allows the interaction with the user. The reported
validation results suggest a reasonable estimation performance; nevertheless,
researchers identify some system limitations that may result in errors in the
estimated trip fuel consumption and emissions.

Considering the progress achieved in the area of eco-routing, the charac-
teristics of the developed models and the results of the performed sensitivity
and empirical analyses (e.g. [24, 25]), the authors of the present paper intro-
duce an innovative mesoscopic approach for energy-efficient routing based on
machine learning functionality. In particular, this paper differs from previous
work in the following aspects:
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• It proposes a context-aware routing methodology that applies a learn-
ing model for estimating the vehicular energy consumption. Due to
this models retraining capability, the introduced methodology is char-
acterized by increased robustness and continuous adaptability to any
contextual change affecting consumption (e.g. degradation of engine
performance due to aging or upgrade of a local road to arterial).

• Unlike any other deterministic model for estimating the vehicular en-
ergy consumption, the proposed learning model can replicate the non-
linear consumption patterns that are hidden in the collected consump-
tion measurements and cannot otherwise be identified.

• The set of contextual parameters selected for learning aggregates all
the factors that have been individually identified by previous studies as
contributors to vehicular consumption (e.g. [26]). Furthermore, differ-
ent approaches are proposed for integrating the impact of these factors
into vehicular consumption calculations, so as to render possible the
on-board installation of the system and its autonomous functionality.

• A suitable hardware and software architecture for implementing the
proposed methodology in an autonomous on-board system is described
in detail. The benefit from using such an eco-friendly navigational
system is of great importance, as according to the exploratory study
performed in [11], it can spare an average of 8% fuel in 46% of trips.
An on-board prototype system has been developed and installed in a
FEV, in order to perform the verification and validation field trials.

• While in previous studies emphasis was given to internal combustion
engine vehicles, the proposed methodology is carefully developed in
order to address effectively the peculiarities of FEVs.

3. Energy-efficient routing methodology

The core functionality of the proposed energy-efficient routing method-
ology includes an innovative learning model used for accurately estimating
the energy consumption that will incur if the vehicle follows a specific route
under a particular contextual frame. In fact, this core functionality can eas-
ily be integrated in several widely accepted routing engines (e.g. Dijkstra
[19], A* [27], Bellman-Ford [28, 29]). Thus, after thoroughly describing the
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proposed learning model in the first part of this section, we proceed with its
integration in a routing engine especially designed for FEVs. The description
of this routing engine and an overview of the entire proposed methodology
are included in the second part of this section.

3.1. Vehicular consumption estimation

The proposed mesoscopic consumption model estimates the vehicular con-
sumption on a road link basis. As a road link we consider an edge of a directed
graph G=(V ,E) (with V={1, 2, ..., n} representing the set of nodes (vertices)
and E as the set of arcs defined between each pair of nodes) that resembles
the road network.

In order to estimate the vehicular consumption incurred while travelling
through a road link one could follow an analytical approach. More specif-
ically, a mathematical formula could be generated after identifying all the
factors affecting vehicular consumption and modeling their participation in
the total vehicular consumption. Then, this formula could be applied in
order to estimate the consumption cost of each link.

In this paper, authors follow a different approach in estimating the vehic-
ular consumption while travelling through a road link. Considering that it is
not yet entirely feasible to develop an analytical model for estimating vehicu-
lar consumption due to the complexity and nonlinearities that dominate the
factors participating in vehicular consumption we propose the development
of an appropriate learning model. This model will detect the numerous pat-
terns or regularities that dominate the underlying process by learning from
the previously collected experience. Then, assuming that the future, at least
the near future, will not differ significantly from the past moments of sample
data collection, the proposed model is expected to predict accurately the
future vehicular consumptions.

First of all, the selection of the training experience, namely the instance
and the target attributes, through which the system will learn has a major
influence on the efficiency of the learning model. As instance attributes
we consider a number of contextual variables that compose the Vehicular
Context (~V), the Driver Profile ( ~D), the Weather Context ( ~W ) and the Traffic

Conditions (~T ), namely the contextual attributes that influence the vehicular

consumption. Attributes that refer to the Roadway Context (~R), like the
road slope or the road class, are intentionally omitted, because they are taken
into account in an implicit manner, since the proposed system considers a
separate machine learning engine for each road link. As target attribute, on
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the other hand, we consider the energy consumed for travelling through the
road link under consideration.

The proposed routing engine should be regarded as part of an autonomous
on-board navigation system. Such a system can monitor and retrieve the
target attribute of the vehicular consumption through the vehicles Controller
Area Network (CAN) bus port. Instance attributes should also be selected
in such a way so that they can adequately describe the contextual status and
can easily be monitored and retrieved. Having this in mind, the following
contextual attributes of each group are selected as the instance attributes of
the training dataset in case of a FEV:

~V = (hb, `b, ~saux, wl) (1)

~D = (cd) (2)

~W = (θ, RH) (3)

~T = (td, tmo, thr) (4)

where hb and `b are the batterys state-of-health and state-of-charge, respec-
tively, ~saux is the vector describing the status of the vehicles electric aux-
iliaries, wl is the load weight, cd is the drivers average consumption rate
calculated by the vehicles trip computer, θ is the temperature , RH is the
relative humidity, td is the current day of the week, tmo is the current month
of the year, and thr is the current hour of the day.

The context of the driver profile and the context of the traffic conditions
are the most challenging to describe. The metric selected to quantify the
driver profile is the average consumption rate calculated by the vehicles trip
computer. This metric represents adequately the drivers usual driving be-
havior (i.e. a more or less aggressive attitude) and it can relatively easily
be retrieved through the CAN bus port. On the other hand, the existence
of recurrent traffic conditions is captured by considering the time window
within which the user travels through the road link.

Subsequently, after defining the instance and target attributes of the
learning model, an appropriate target function must be selected. As al-
ready reported, the target function f of the learning model should estimate
the amount of energy required to travel through a specific road segment
under specific contextual conditions (f : C → R). Considering that the en-
ergy consumption calculated by the target function is a real value and that
the relations among the context factors are non-linear, we proceed with the
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Figure 1: The structure of the MLP network used for estimating the vehicular consumption

selection of the target function based on the outcome of the Universal Ap-
proximation Theorem [30]. According to this, a multilayer perceptron (MLP)
network with a single hidden layer, which contains finite number of hidden
neurons, and a linear combination of the outputs of the hidden neurons as the
network output constitutes a universal approximator of any m-dimensional,
continuous and non-linear function. Therefore, the MLP network depicted
in Figure 1 is proposed for the representation of the target function f̂ . Based
on this network structure the form of the function f̂ is:

f̂( ~C0, ~w) =
∑
k

wokϕ(
∑
j

wkjcj + bk) (5)

The sigmoid activation function ϕ(.) adopted in the proposed MLP net-
work is:

ϕk
(
uk(j)

)
=

1

1 + exp
(
−αuk(j)

) a > 0 and −∞ < uk(j) <∞

i.e. the logistic function where α is a constant setting the slope parameter
of the sigmoid function and uk is the weighted sum of the j synaptic input
values.
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The final step in building the learning model is to compute a uniform ε
approximation (f̂0) to a given training set, i.e.

|f̂0(c1, c2, ..., cj)− f(c1, c2, ..., cj)| < ε (6)

for all sets of instance attributes (c1, c2, ..., cj) that lie in the input space.
This is achieved by applying a learning algorithm in the selected target

function, i.e. the selected MLP network. The most widespread choice in case
of MLPs is the back-propagation algorithm [31], which searches the space of
possible hypotheses using gradient descent to iteratively reduce the error in
the network’s fit to the training dataset. However, in order to accelerate the
typically slow rate of convergence experienced with the method of gradient
descent, the authors suggest the use of the scaled conjugate gradient descent
method [32] that handles the supervised learning as a numerical optimization
problem. The objective of the learning process is to adjust the weights of the
MLP network so as to minimize the average squared error energy function
Eav over all (N) examples of the training set:

Eav =
1

N

N∑
n=1

E(n) =
1

N

N∑
n=1

1

2
e20(n) =

1

N

N∑
n=1

1

2
(d0(n)− y0(n))2 (7)

where e0 is the error signal at the output neuron, d0 is the desired response
of the output neuron and y0 is the function signal appearing at the output
neuron.

Considering that the error surface of a MLP with supervised learning is a
highly nonlinear function of the synaptic weight vector w, the cost function
Eav(w) can be expanded using the Taylor series about the current point on
the error surface w(n):

Eav = (w(n)+∆w(n)) ' Eav =
(
w(n)

)
+gT (n)∆w(n)+

1

2
∆wT (n)H(n)∆w(n)+...

(8)

g(n) =
∂Eav(w)

∂w
|w=w(n) (9)

H(n) =
∂E2

av(w)

∂w2
|w=w(n) (10)

where g(n) is the local gradient vector and H(n) is the local Hessian matrix.
The scaled conjugate gradient descent method tries to iteratively mini-

mize the quadratic part of the Taylor series expansion of Eav in Eq. (8) and is

10



Table 1: A brief summary of the scaled conjugate gradient descent algorithm

Initialize
1. Select initial weight vector w0 and scalars

0 < λ0 < 10−6, 0 < σ < 10−4, λ̄0 = 0
Set r0 = p0 = −E ′(w0), k = 0 and success = true

Iteration k (k=0,1,...)
2. If success = true, calculate the second-order information:

σk =
σ

|pk|
, sk =

E ′(wk + σkpk)− E ′(wk)
σk

, δk = pTk sk

3. Scale sk:
sk = sk + (λk − λ̄k)pk, δk = δk + (λk − λ̄k)|pk|2

4. If δk ≤ 0, make the Hessian matrix positive definite:

sk = sk + (λk − 2
δk
|pk|2

)pk, λ̄k = 2(λk −
δk
|pk|2

)

δk = −δk + λk|pk|2, λk = λ̄k
5. Calculate the step size:

µk = pTk rk, αk =
µk
δk

6. Calculate the comparison parameter:

∆k = 2δk
[E(wk)− E(wk + αkpk)]

µ2
k

7. If ∆k ≥ 0, error can be reduced. Set:
wk+1 = wk + αkpk
rk+1 = −E ′(wk+1)
λ̄k = 0, success = true
If (k mod N = 0), restart the algorithm: pk+1 = rk+1

else create new conjucate direction:

βk =
|rk+1|2 − rk+1rk

µk
, pk+1 = rk+1 + βkpk

If (∆k ≥ 0.75), reduce the scale parameter: λk =
1

2
λk

else error cannot be reduced. Set: λ̄k = λk, success = false
8. If ∆k < 0.25, increase the scale parameter: λk = 4λk
9. If success = true, set: k = k + 1, ¯λk+1 = λ̄k, λk+1 = λk

return to step 2
Stopping criterion

If the steepest descent direction |rk+1| < 10−6, return wk+1 and exit
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Table 2: Scaled conjucate gradient algorithm parameters

Parameter Value

Num. convergence tries 4
Maximum iterations 10000
Iterations without improvement 100
Convergence tolerance (ε) 10−5

Min. gradient 10−6

briefly described in Table 1. More specifically, the scaled conjugate gradient
algorithm uses a numerical approximation for the second derivatives (Hes-
sian matrix) and it avoids instability by combining the model-trust region
approach from the Levenberg-Marquardt algorithm [33] with the conjugate
gradient approach. This allows scaled conjugate gradient to compute the
optimal step size in the search direction without having to perform the com-
putationally expensive line search used by the traditional conjugate gradient
algorithm. Table 2 summarizes the values selected for the parameters that
define the stopping criteria of this iterative algorithm. Thus, the iterative
process may terminate either successfully (i.e. the convergence tolerance or
the minimum gradient is achieved) or without reaching convergence (i.e. the
maximum number of either convergence tries or iterations without improve-
ment or total iterations is reached). The scaled conjucate gradient descent
method is usually much faster than the traditional steepest descent algo-
rithms using either constant or variable learning rate. The learning rate is
replaced with the constant βk that is calculated by the Levenberg-Marquardt
algorithm (Table 1).

According to the inductive learning hypothesis [9], the hypothesis iden-
tified by the learning process (due to fitting best the observed data) can
reliably predict the vehicle’s energy consumption. The results (Table 3) gen-
erated after applying the described learning process to the proposed vehicular
consumption model justify the inductive learning hypothesis. In particular,
according to the first set of results that correspond to the training dataset the
proposed model is capable of learning the patterns underlying the vehicular
consumption, while according to the second set of results that correspond to
the validation dataset the trained model is capable of generalizing from the
learned experience.

The benefits of adopting the described learning model for approximating
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Table 3: Analysis of MLP model’s training and validation results

Metric Training Set Validation Set

Mean target value for input data 14.814707 17.150004
Mean target value for predicted values 14.815209 16.734498

Variance in input data 4.626004 5.4132010
Residual variance after model fit 0.0003825 0.0034700
Proportion of variance explained by model (R2) 99.999% 99.653%

Coefficient of variation (CV ) 0.001320 0.025410
Normalized mean square error (NMSE) 0.000009 0.000021
Correlation between actual and predicted 0.999995 0.992635

Maximum error (ME) 2.0410452 3.112311
Root Mean Squared Error (RMSE) 1.732103 2.000116
Mean Squared Error (MSE) 3.0001825 4.000465
Mean Absolute Error (MAE) 1.859544 2.252533
Mean Absolute Percentage Error (MAPE) 0.1255201 0.131343

the vehicular consumption function can be summarized in the following:

• The undefined nonlinearities that exist among the factors contributing
into vehicular consumption can be detected.

• Once the training process is complete, the developed system is rendered
capable of running in an autonomous fashion.

• The developed system is applicable to any part of the road network
and to any contextual conditions prevailing at the time.

• The developed system is intelligent and able to adapt to any environ-
mental change after repeating the learning procedure.

• The developed system is characterized by versatility, i.e. it can model
different vehicles.

3.2. Energy-efficient routing

After defining the model for estimating the vehicular consumption we
proceed with the formulation of the energy-efficient routing engine. The goal
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of this routing engine is to find the optimal route that minimizes the energy
consumed by the vehicle while travelling from an origin to a destination point.

This route-planning problem can be transformed into the well-known
shortest path problem after making the following assumptions:

• the road network is represented by a weighted directed graph G=(V ,E,w),
i.e. the set of vertices V = {u1, u2, . . . , un} denotes the nodes of the
road network, the set of directed edges E ⊆ V xV denotes the road
links and the edge weight function w (E → R) denotes the function
that calculates the cost associated to each road link (e.g. travel time,
length, emissions, consumption, etc.);

• the vehicular consumption costs estimated by the developed model (f̂ :
C → R formulate the edge weight matrix of the graph;

• the vehicular consumption costs are assumed fixed for the time win-
dow under consideration. Thus, the dynamic shortest path problem
examined is discretized in consecutive static instances that can be re-
solved by the classic shortest path algorithms for static networks (e.g.
Dijkstra, A*);

• the vehicles origin O and destination D points are matched to the
corresponding vertices of the graph (uO and uD respectively).

Following these assumptions, our goal to find the optimal route that in-
volves the minimum energy consumption while travelling from O to D is
translated into:

cOD = min{w(p′)|p′ ∈ POD} (11)

where cOD is the minimum vehicular consumption cost for travelling from O
to D, POD is the set of all the possible paths from O to D, p′ is the optimal
route and w(p) is the computational function of the cost of any path p. In
case of a static network the cost of a path p is:

w(p) =
k∑
i=1

w(ui−1, ui) (12)

where k is the length of the path and w(ui−1, ui) is the cost of the ith segment
of the path.
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The most famous algorithm that solves the shortest path problem for a
graph with non-negative edge path costs is Dijkstra’s algorithm. Assuming
that the vehicular consumption incurred while travelling through a road link
is nonnegative, this algorithm is applicable to the single pair shortest path
problem described in Eq. (11)-(12). This assumption, however, is not always
valid in the case of FEVs, which can recuperate energy through regenerative
breaking (e.g. the vehicular consumption incurred when a FEV goes downhill
on a long road link may be negative). In presence of negative edge path
costs, a suitable algorithm for finding the shortest path is the Floyd-Warshall
algorithm [34, 35]. This algorithm calculates the costs of the shortest paths
between all pairs of a graphs vertices and it can easily reconstruct them after
applying a minor modification. However, its cubic time complexity (O(|V |3))
has motivated the search for other alternatives. Another suitable algorithm
for finding the shortest path from O to D is the Bellman-Ford algorithm that
runs in O(|V |∗|E|) time. Although the complexity of Bellman-Ford algorithm
deteriorates also to O(|V |3) in case of dense graphs (where |E| → |V |2), this
probability is eliminated in case of road networks, which are represented by
sparse graphs. Thus, for applications in road networks the Bellman-Ford
algorithm runs faster than the Floyd-Warshall algorithm, but not as fast as
the Dijkstra algorithm.

The fact that, in the present application, the shortest path algorithm
might run multiple consecutive times renders the adoption of a fast algo-
rithm more appealing. In order to overcome the limitation set by possible
negative edge path costs, the shifting technique described by Johnson in [36]
is applied on the networks edge path costs. The requirements for applying
this technique on a network are the existence of fixed edge costs and the ab-
sence of negative cycles. The former can be tackled through the discretization
into consecutive static instances, while the latter can be taken for granted.
Otherwise, if, for example, such a round trip route existed, a FEV could end
up with a higher battery charge level when returning back to its starting
position.

According to Johnson, if the above requirements are satisfied, a suitable
function h: (V → R), exists satisfying the following condition for all nodes
u and v:

w′(u, v) = w(u, v) + h(u)− h(v) ≥ 0 (13)

where w(u, v) is the initial edge cost and w′(u, v) is the shifted edge cost.
This shifting in edge costs does not affect the structure of shortest paths as
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the shifting values of the paths intermediate nodes counterpoise each other
when calculating the total path cost (Eq. (12)). A potential representation
for the function h(.) could be the following:

h(u) := dx(u) (14)

where dx(u) denotes the shortest path distance from an arbitrary node x to
node u computed by the Bellman-Ford algorithm.

After generating the matrix with the shifted edge costs, any shortest
path algorithm suitable for networks with nonnegative edge path costs may
be applied on the network under consideration. Thus, we choose to apply
the Fibonacci heap implementation of the Dijkstra algorithm that runs in
O(|E|+|V |*log|V |) time and it is suitable for sparse graphs. Considering
that the described technique includes both the subsequent execution of the
Johnson technique as well as the subsequent execution of the Fibonacci heap
implementation of the Dijkstra algorithm, it runs in O(|V |*|E|+|V |*log|V |)
time. Compared to the O(|V |*|E|) time complexity of the plain Bellman-
Ford algorithm the time complexity of the proposed shifting technique is
might be worse, however, in case of multiple runs the first stage of computing
the h(u) function has to be executed only once (as long as the contextual
frame remains unchanged). Following the Johnsons shifting approach the
overall routing routine is briefly summarized in Table 4.

4. System Components and Architecture

The proposed energy-efficient methodology is implemented as part of an
autonomous on-board navigation system that provides the driver with extra
routing functionalities. The main architecture of this on-board system, i.e.
its principal components and their interconnections, are presented in Figure
2. Following a bottom-up approach, the main components comprising the
on-board system are: the Travelling Experience Handler, the Energy Efficient
Routing Engine, the Navigation Engine, the User Interface and two storage
units, i.e. the Travelling Experience Repository and the Machine-Learning
(ML) Repository.

The Travelling Experience Handler is responsible for the collection, stor-
age and retrieval of all historical data comprising the travelling experience.
While the vehicle travels, this component monitors and retrieves (typically,
through the CAN bus port, external sensors such as GPS, and the map
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Table 4: A brief summary of the proposed routing routine
Initialize

c0 := current context ;
for each edge e ∈ E :

we := f̂0,e(c0) ; //f̂0,e(c0) represents the energy consumption learning
model of the e edge

//we = w(u, v), each node is determined by a start node u
and an end node v

end for
G′ := G(V,E) ∪ ξ; //connect a ξ vertex through a zero distance edge

with the graph G
dξ(v) := BellmanFord(G′, ξ) ; // calculate the distance of the vertex ξ

to the rest of vertices
Routing

if c0 != current context:
Initialize();

end if

for each vertex v ∈ V :
shift[v] := dξ(v) ; //populate the shifting values array
dist[v] := infinity ;
predecessor[v] = undefined ;
FibHeap.insertNode(infinity) ; //FibHeap is the implemented Fibonacci Heap

end for
FibHeap.changeNodeValue(startNode,0);

while FibHeap.getNumberOfNodes() != 0 :
currentValue = FibHeap.getMinimumNodeValue() ;
currentNode = FibHeap.extractMinimumNode() ;
dist[currentNode] = currentValue ;

for each adjacentNode of currentNode :
if dist[adjacentNode] > dist[currentNode] + w(currentNode, adjacentNode) :

dist[adjacentNode] := dist[currentNode] + w(currentNode, adjacentNode) ;
predecessor[adjacentNode] := currentNode ;
FibHeap.changeNodeValue(adjacentNode,dist[currentNode]+

+w(currentNode, adjacentNode)) ;
end if
end for

end while

//the predecessor[] contains the shortest paths
//the dist[] contains the energy costs of the shortest paths
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database) all the necessary contextual attributes in order to generate the
corresponding training records. These records comprise the vehicles collected
experience and are stored in the Travelling Experience Repository. When-
ever this experience is needed by any other component of the system, it can
be retrieved through the Travelling Experience Handler.

The energy-efficient routing functionality proposed in this paper is en-
compassed by the Energy Efficient Routing Engine. This engine consists of
two subcomponents, i.e. the Routing Engine and the ML SubSystem. The
ML SubSystem implements the Vehicular Consumption Estimation function-
ality and it consists of the ML Estimator, the Training Scheduler and the
ML Trainer. The ML Trainer generates and trains the vehicular consump-
tion MLP networks and stores them in the ML Repository, while the ML
Estimator retrieves the structures of the trained MLP networks from the ML
Repository, feeds them with the current contextual instance and estimates
the corresponding vehicular consumption. The Training Scheduler, on the
other hand, ensures the availability of any trained MLP network required
for finding the most energy efficient path towards the destination. Further-
more, it renders the proposed routing technique robust to any contextual
or structural change in the road network by monitoring the update status
of the training datasets stored in the Travelling Experience Repository and
retraining the corresponding MLP networks when appropriate.

The ML functionality provided by the ML SubSystem is utilized by
the Routing Engine that implements the core routing functionality. In the
current configuration of the Routing Engine component, Johnsons shifting
technique is performed, in order to enable the application of the Fibonacci
heap implementation of the Dijkstra algorithm. The road segment consump-
tion costs required during the Dijkstra algorithm calculations are predicted
by the ML Estimator after feeding it with the appropriate contextual in-
stance. Thus, the Routing Engine component constructs step-by-step the
most energy-efficient path towards the destination and provides the final
outcome to the Navigation Engine.

The components described previously, namely the Travelling Experience
Handler and the Energy Efficient Routing Engine, implement the energy
efficient routing methodology proposed in this paper. The rest of the com-
ponents of the On-board Navigation System depicted in Figure 2, i.e. the
Navigation Engine and the User Interface, implement functionalities that
are common to all modern navigation systems. The User Interface is a touch
friendly interface that allows the interaction of the user with the system.
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Figure 2: System architecture

This interaction involves changing the settings configuration, choosing a des-
tination, initiating the routing process, initiating the navigation process and
examining the map. The Navigation Engine forwards the routing requests
to the Energy Efficient Routing Engine, provides vocal and graphical guid-
ance for the calculated routes and monitors the path followed by the vehicle
in order to detect any potential detour. In the latter case, it initiates the
rerouting process, informing the user accordingly.

Implementing the proposed architecture ensures that the developed sys-
tem can run in an autonomous fashion. The system is capable of collecting
and storing locally, through its own monitoring mechanism, the experience re-
quired for training the vehicular consumption ML model. Therefore, there is
no need for any external entity in order to render the on-board system func-
tional, although the ability of exchanging travelling experience with other
cars would improve the systems learning rate. Finally, concerning the stor-
age capacity limits of the on-board system each repository has its own control
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mechanism that discards the most outdated records in case there is no space
left for new entries, i.e. the oldest training records of the most frequently
visited road segments in case of the Travelling Experience Repository, and
the MLP structure records of the less frequently visited road segments in
case of the ML Repository. Thus, the system is designed to be both robust
and efficient.

5. Performance Evaluation

5.1. Prototype Implementation

To validate and evaluate the performance of the proposed routing method-
ology, a prototype system has been developed implementing the architecture
described in the previous section. In particular, the system components and
interfaces were implemented in C# .NET, while the system repositories were
implemented in MS SQL database schemas. For the required core ML func-
tionality the prototype implementation exploited the COM library provided
by a commercial software package, namely the DTREG predictive modeling
software [37].

The developed components were, afterwards, installed in a fan-less em-
bedded computer with high connectivity capabilities especially designed for
in-vehicle applications [38]. A dual-core mobile processor, a solid state stor-
age disk, memory and storage stabilizers to withstand the challenges of high
vibration, 3G connectivity and several external ports are the main character-
istics that render this computer ideal for our prototype implementation. The
user interaction with the system was enabled via a 7” LCD touch screen that
was attached to the windshield and connected to the embedded computer.

The next step involved the installation of the prototype system in a probe
vehicle. The vehicle selected for performing the evaluation campaign was a
standard FEV with no special configuration. The characteristics of this vehi-
cle can be summarized as follows: rear electric drive, permanent magneto syn-
chronous engine, weight of 990kgr (sum of vehicle mass and battery weight),
battery capacity of 22kWh, charge time of 8 hours, top speed of 120km/h and
average range of 140km. Furthermore, another important characteristic of
the selected vehicle was the availability of a CAN bus socket. The prototype
system was attached to this port through the Vector Box VN1610 device
[39], which is an adaptor with a USB interface for the CAN bus protocol.
The integration of the embedded computer in the vehicle was finalized with
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the connection of the power supply and the connection of an external GPS
receiver.

5.2. Field trial statistics

A field trial campaign for verifying the developed prototype and evalu-
ating the performance of the proposed methodology was carefully planned
and performed in the area of Chieri, a town located near Turin, Italy. This
area features a mesh road network structure and variable traffic conditions.
An overview of this area together with a representation of the spatial distri-
bution of the measurements collected during the field trials are presented in
Figure 3.

Figure 3: The spatial distribution of measurements collected during the field trials

The field trial campaign consisted of two parts: the data collection cam-
paign and the performance evaluation campaign. The purpose of the data
collection campaign was to collect adequate measurements for training the
MLP networks required by the proposed routing methodology. Due to the
lack of past experience, the probe vehicle followed random routes in as many
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Figure 4: The frequency distribution of the length of the routes selected for the perfor-
mance evaluation campaign

Table 5: MLP network parameters

Parameter Value

No. of neurons (hidden layer) 20
Slope parameter -0.8

different context instances as possible so as to enhance the quality of the
training dataset. Of course, when applying the proposed methodology in a
final product the required experience is accumulated through every day trav-
elling. During a six-week period, the probe vehicle travelled approximately
4880 km and collected 16 MB of data corresponding to 168060 different con-
textual instances (93 bytes/record). A total of 2436 MLP networks corre-
sponding to 2436 links of the road network depicted in Figure 3 were trained
using the generated training dataset. Table 5 presents the values of the MLP
networks’ parameters.

On the other hand, the purpose of the performance evaluation campaign
(which followed the training data collection campaign) was twofold, namely
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to verify the robustness and the stability of the developed prototype and
to validate the efficiency of the proposed methodology. 40 different pairs
of origin and destination points were selected in the greater area of Chieri
depicted in Figure 3. Two routes were generated for each pair of points,
i.e. the ”energy efficient” route proposed by the developed methodology and
the ”fastest path” route proposed by a conventional navigation system, and
their estimated metrics (energy consumption, travel time, route length) were
recorded. Regarding the energy consumption metric, the estimations were
performed by the proposed methodology when calculating the energy efficient
route and by a conventional methodology, based on the routes length and
the vehicles specified average consumption, when calculating the fastest path
route. Then, the test vehicle was carefully driven to follow precisely both
routes for each pair of origin and destination points and the corresponding
actual metrics were recorded. In order for the metrics of each pair of routes
to be comparable, both of the routes were travelled after ensuring the same
context frame. Figure 4 presents the frequency distribution of the length of
the generated routes. Considering the size of the testing area the length of
the majority of the routes is less than 10 km.

Concerning the efficiency of the proposed methodology an analytical study
on the measurements collected during this part of the field trials was per-
formed and the results are presented in the following section.

5.3. Field trial results

The validation of the efficiency of the proposed methodology involves the
validation of the implemented learning functionality and the validation of
the developed routing engine.

In order to measure the accuracy of the implemented learning function-
ality, the energy consumption estimations of the generated energy efficient
routes were compared to the corresponding values monitored by the test-
ing vehicle while travelling these routes. Figure 5 presents both graphically
and numerically the deviation of the energy consumption estimations from
the corresponding actual values. The metric denoted as MPE stands for
Mean Percentage Error and it is the computed average of percentage errors
by which the forecasts (estimations) of a model differ from actual values
of the quantity being forecasted. The calculated MPE of 0.85% indicates
that our implemented learning functionality is quite accurate and unbiased.
Furthermore, the slightly positive value of MPE indicates that the energy
consumption is usually slightly overestimated. This conclusion is important
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Figure 5: Performance metrics for the prediction accuracy of the proposed vehicular con-
sumption model

as it helps ensure that the vehicle will reach its destination even in case of
critical battery level. While calculating the MPE, the positive and the nega-
tive forecast errors can offset each other. For that reason, the MAPE metric,
which stands for Mean Percentage Absolute Error, was also calculated. This
metric is computed by summing the absolute differences between the fore-
casts and the corresponding actual measured values and by finally dividing
the sum with the number of considered pairs (forecast-actual value). Con-
sidering the complexity of the consumption prediction task, the calculated
MAPE value of 10.56% can be regarded as a successful result.

This conclusion is further established if we calculate and evaluate the
corresponding metrics for the predictions performed by a reference vehicular
consumption model. The reference model considered here is applied in sev-
eral commercially available navigation systems and it estimates the vehicular
consumption based on the vehicle’s average consumption rate (Wh/km) and
on the road segment’s length (km). The results are presented in Figure 6.

The fact that the calculated MAPE (Figure 6) is two times greater than
the one calculated previously (Figure 5) indicates that the improvement in-
troduced in the energy consumption estimation by the proposed model is
quite significant (improvement by a factor of two) (Table 6). The value of
the MPE, on the other hand, is very close to the MAPE value. Therefore,
the energy consumption estimation is almost always biased with a quite large
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Figure 6: Performance metrics for the prediction accuracy of a reference vehicular con-
sumption model

Table 6: Reference vehic. consumption model vs. Proposed vehic. consumption model

Reference model Proposed model

MPE 17.73% 0.85%

MAPE 20.52% 10.56%

percentage error.
After validating the accuracy of the energy consumption predictions per-

formed by the proposed model against those performed by the reference
model, we proceed with the validation of the developed routing engine. In
particular, the efficiency of the developed routing engine is evaluated through
the comparison of the characteristics (consumed energy, length, travel time)
of the generated energy-efficient routes against the ones of the corresponding
fastest path routes generated by a conventional navigation system. Sev-
eral pairs of ”energy-efficient” and ”fastest path” routes are generated and
travelled (as already explained in section 5.2) and the relative frequency dis-
tributions of the comparison results are presented in the following diagrams.

The field trial results depicted in the diagram of Figure 7 validate the en-
ergy efficiency of the routes generated by the developed prototype system for
all pairs of origin and destination points tested. This diagram presents both
the energy savings estimated initially and the ones realized when following
the generated routes instead of the corresponding fastest path routes with
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Figure 7: Relative frequency diagram for the estimated and the realized energy savings
incurred when following the energy efficient routes instead of the corresponding fastest
path routes

the testing vehicle. Based on the energy savings frequency distribution of
the initial estimations, the energy efficient route spares on average 18.34%,
and at least 15% energy in 65% of the tests. Furthermore, in the rest 35% of
the tests, the calculated energy savings are at least 10% of the total energy
required in case of the conventional fastest routing.

From the comparison of the estimated energy savings with the realized
ones it is deduced that the latter are slightly higher than the former with
a mean value of 20.69%. This observation further justifies the outcome ex-
tracted while validating the learning functionality efficiency that the pro-
posed system usually overestimates slightly the energy consumption. Over-
stimating slightly the energy consumption along a route means that the ac-
tual energy required to travel along the particular route is less. Therefore,
when the driver selects a route proposed by the developed system, he will
actually save more energy than the amount initially estimated for that route.

Studying the length of the energy efficient routes against the length of the
corresponding fastest path routes, we reach the results depicted in Figure 8.
Based on this diagram, the energy efficient routes are usually (in around 40%
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of the cases) up to 5% longer than the corresponding fastest path routes.
However, there are a few cases referring to energy efficient routes, which
follow quite longer paths (up to 15%) consisting of road segments with better
energy related characteristics (e.g. slope, traffic conditions). The major
outcome is that shorter routes are not necessarily more energy efficient, which
proves that it is important to take into account the identified contextual
parameters in the routing process.

Figure 8: Relative frequency diagram for the comparison of the length of the energy
efficient routes against the corresponding fastest path routes

Another important study involves the comparison of the time needed to
travel through an energy efficient route instead of the corresponding fastest
path route. During the field trials, the realized travel time was recorded
for both the energy-efficient and the corresponding fastest path routes and
the comparison results are presented in Figure 9. According to the depicted
distribution diagram, in approximately 16% of the cases the route generated
by the proposed methodology was not only more energy-efficient but also
faster than the corresponding fastest path route generated by a conventional
navigation system. However, it is not safe to conclude with certainty that
in these cases the most energy-efficient route is identical to the fastest path
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route. There might be an even faster route, for the pair of origin and desti-
nation points under consideration, that has not been identified due to errors
in travel time predictions. On the other hand, in the rest of the cases, a
travel time loss occurred when the FEV followed the energy-efficient route,
indicating possibly that these routes consisted of road segments with better
energy related characteristics (e.g. slope) but lower speed limits. However,
after considering the average realized travel time overhead of 10.26% against
the average realized energy savings of 20.69%, the user might have a second
thought on selecting the fastest path route, depending of course on the cir-
cumstances. As far as FEVs are concerned, which currently present heavy
limitations regarding their battery capacity and their recharging process du-
ration, selecting the generated energy-efficient route seems to be beneficial
based on the extracted results.

Figure 9: Relative frequency diagram for the time loss realized when following the energy
efficient routes instead of the corresponding fastest path routes

6. Conclusions

After providing an overview for the current status in the area of eco-
friendly systems (i.e. eco-driving and eco-routing mechanisms), this paper
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proceeded with the development of an on-board energy-efficient routing sys-
tem especially designed for FEVs. Instead of validating the efficiency of the
proposed methodology through simulations, a prototype was developed and
a series of field tests were performed after installing the developed prototype
in a testing FEV.

The results for these tests were quite promising for the proposed context-
aware routing methodology. In particular, the introduced mesoscopic vehic-
ular consumption model is quite accurate and unbiased as indicated by the
MPE value of 0.85% that was measured during the conducted tests. The
results concerning the functionality of the developed routing engine were
also positive. Although the generated energy efficient routes were on av-
erage 1.45% longer in distance and 10.26% longer in travel time than the
corresponding fastest path routes, we believe that the achieved average en-
ergy savings of 20.69% compensate adequately for this overhead in route
distance and travel time. In order to further strengthen this argument, we
present a numerical example. Firstly, we choose the median of the fastest
path routes in our field tests, which is a route with a length of 5944 m,
travel time of 13 minutes and required energy of 816 Wh. Based on the aver-
age values reported before, the expected characteristics of the corresponding
energy efficient route generated by the proposed methodology are: length
of 6030 m, travel time of 14.3 minutes and required energy of 647.17 Wh.
This example reveals that the travel time loss (1.3 minutes) and the distance
overhead (86m) are less important compared to the realized energy savings
(168.83Wh), which are adequate for moving a FEV (with an average con-
sumption of 154Wh/km) for approximately 1096 m more (i.e., the range of
the testing FEV can be extended on average by 18%). Hence, we believe that
these findings render the proposed energy routing methodology valuable for
everyday use.

Future studies include the investigation of other machine learning algo-
rithms (e.g. Generalized Rregression Neural Networks) for estimating the
vehicular consumption. The adoption of more complex algorithms such as
GRNNs might improve the achieved estimation accuracy. However, the extra
delay introduced due to their increased complexity might not allow their ap-
plication in on-board navigation systems performing real-time calculations.
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