
  
Abstract—This paper addresses the problem of 

effectively encompassing learning functionality in a 
cognitive radio system. It provides a brief overview of the 
main principles of cognitive radio and discusses on ways to 
meet the emerging engineering challenges. It proposes 
Bayesian Networks as a valuable tool for modeling the 
stated problem and elaborates on the deployment of an 
effective learning and adaptation strategy. Finally, 
indicative results are presented and useful conclusions are 
reached. 
 

Index Terms— Bayesian networks, Cognitive radio, 
Machine learning 
 

1 INTRODUCTION 
N increasingly important engineering challenge is 
the proper management of the electromagnetic 
radio spectrum, a valuable yet limited natural 

resource. The current fragmentation of the 
radiofrequency (RF) spectrum leads to its significant 
underutilization [1]-[2]. Thus, there is need for the 
development of a robust spectrum management scheme, 
capable of exploiting available frequency bands as 
efficiently as possible. 

Cognitive radio [3]-[5] appears as an attractive, highly 
promising answer to the abovementioned challenge. Its 
basic principle lies in the ability to sense the RF 
environment and properly adjust to current network 
characteristics. This adjustment can be realized through 
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appropriate reconfiguration of network elements 
(network transceivers), i.e. through suitable switching 
among different configurations. The term configuration 
refers to a combination of Radio Access Technology 
(RAT), spectrum, transmission power, as well as 
algorithms and parameters for modulation, coding and 
error control. 

A typical cognitive radio operation can be divided into 
three, tightly interconnected, phases [5]: (a) radio-scene 
analysis, i.e. selecting a configuration and measuring the 
interference levels perceived; (b) channel identification, 
i.e. configuration capabilities estimation, based on (a); 
(c) transmit-power control and dynamic spectrum 
management. 

Although the term cognitive directly dictates the need 
for encompassing (machine) learning functionality in the 
selection process, this necessity has not yet been 
adequately addressed in the literature. The need for 
learning, based on knowledge (data and experience), is 
amplified, especially in phase (b), by the stochastic 
nature of a configuration’s capabilities (e.g., maximum 
achievable bit-rate, maximum achievable coverage), 
since the latter are influenced by external RF stimuli.  

Hence, the primary problem that needs to be tackled is 
the following: “Given a candidate configuration, which 
are the anticipated capabilities, especially in terms of 
achievable bit-rate and coverage values? Which 
learning and adaptation mechanisms guarantee a high 
degree of assurance in the estimation process?”  

The contribution of this paper lies exactly in the 
provision of such a machine learning technique for 
addressing the aforementioned problem. This paper aims 
at solving the specified problem by deploying a simple 
Bayesian Network [6]-[8] (Section 3), in combination 
with a learning and adaptation strategy (Section 4). The 
goal is to maintain a certain level of simplicity 
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(computationally intensive operations are undesirable in 
a real-time optimization system), without however 
compromising the effectiveness and extendibility of the 
proposed solution. Finally, comprehensive results are 
presented (Section 5), and conclusive remarks are 
reached (Section 6).  

2 BACKGROUND 
In today’s literature, the ‘learning’ aspect of cognitive 

radio has been underestimated. So far, this trend has 
fueled much research into policy-based cognitive radios. 
These are radios whose operation is governed by a 
reasoning engine that examines the current state of the 
environment and makes decisions on how the radio 
should operate [9]. An example of this is an IEEE 
802.11 modulation controller that switches from 16-
QAM to QPSK to BPSK, as the Signal-to-Noise Ratio 
(SNR) decreases [9]-[10]. 

Generic learning-based cognitive radio is a relatively 
untapped research area. State-of-the-art research 
activities include the employment of genetic algorithms 
[11] to evolve a radio defined by a chromosome, with a 
view to optimizing performance [12]-[13]. Specifically, 
the chromosome’s genes represent the adjustable 
parameters in a given radio, and by genetically 
manipulating the chromosomes, the genetic algorithm 
can find a set of parameters that optimize the radio for 
the user’s current needs. In addition to these efforts, 
Clancy et al. [9] examine the fundamentals of learning 
(learning-based approach) and reasoning (policy-based 
approach) and propose an architecture to jointly utilize 
them. The resulting framework is then used to address 
two common problems in cognitive radio, namely 
capacity maximization and dynamic spectrum access.  

The present paper intends to extend the existing 
literature with regards to learning-based cognitive radio, 

by providing a Bayesian Network based technique 
targeted for the effective discovery of configuration 
capabilities.  

 
 

3 FORMULATION AS A BAYESIAN NETWORK 
Figure 1 depicts the Bayesian network that is proposed 

for modelling the problem specified in Section 1. ABR 
and COV are random variables representing achievable 
bit-rate and coverage, respectively. Since ABR represents 
the configuration’s achievable bit-rate and not the traffic 
load (active sessions), variables ABR and COV are 
conditionally independent, even for CDMA-based 
systems. CFG is another random variable, representing a 
configuration. CFG is the Bayesian network’s predictive 
attribute (node), while ABR and COV are the target 
attributes. 

The goal is the determination of the maximum value 
of the conditional probability Pr[ , | ]ABR COV CFG . 
Using the joint probability formula and the Bayesian 
chain rule formula, it can easily be shown that:   

Pr ,ABR COV CFG⎡ ⎤⎣ ⎦ = 

Pr ABR CFG⎡ ⎤⎣ ⎦ · Pr COV CFG⎡ ⎤⎣ ⎦     (1) 

Relation (1) means that ABR and COV can be 
decoupled. Two independent conditional probability 
tables (CPTs) can, therefore, be organized. The analysis 
that follows refers to achievable bit-rate estimation. 
Exactly the same approach can be used for coverage, 
therefore it is omitted.  

Figure 1 depicts the structure of a CPT for achievable 
bit-rate. Each column of the CPT refers to a specific 
configuration. Assuming there are n possible 
configurations, the CPT includes n columns. Each line of 
the CPT corresponds to an achievable bit-rate value. 
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Figure 1: Bayesian Network for the estimation of configuration capabilities 



Notice that a discrete set of m potential achievable bit-
rate values has been defined. Without loss of generality, 
enumeration is done in ascending order (i.e., 
abr1<abr2<…<abrm). The cell at the intersection of line 
i  and column j  is a probability value. It expresses the 
probability that bit-rate abri will be achieved, given the 
fact that configuration jc  has been selected. Formally, 

this is denoted as Pr i jABR abr CFG c⎡ ⎤= =⎣ ⎦ . Given a 

configuration, the most probable value of the achievable 
bit-rate is the value that corresponds to the maximum 
conditional probability. 

 

4 LEARNING AND ADAPTATION STRATEGY 
In Section 3, it was explained that the capabilities of 

potential configurations are modelled through the CPTs. 
The next step will be to describe how to update the 
CPTs. This learning and adaptation process takes into 
account the measurements (initial estimations) of the 
cognitive radio system and, more specifically, the 
“distance” (absolute difference) between each candidate 
value and the measured value. 

Let us assume that an initial estimation shows that a 
specific configuration can achieve bit-rate abrmeas. This 

measurement can be exploited, in order to fine-tune 
(enhance or decrease) the values of the CPTs, so as to 
increase the degree of assurance of future predictions. 
Let Δa be the maximum difference between the 
candidate achievable bit-rate values, i.e. Δa = abrm – 
abr1.  

Then, the following correction factor, cori, can be 
computed for each candidate achievable bit-rate value 
abri:  

1 i meas
i

abr abr
cor

a
−

= −
Δ

       (2) 

It holds that 0≤cori≤1. A value close to 1 reflects that 
the corresponding candidate value abri is close to the 
measured value abrmeas, thus it should be reinforced 
accordingly. The opposite stands for a value that is close 
to 0. 

Given a candidate configuration cj, the correction of 
the CPT values Pr[ | ]i jABR abr CFG c= =  can then be 
done as follows, for each candidate value abri: 

Pr[ | ]

Pr[ | ]
i j new

i i j old

ABR abr CFG c

L cor ABR abr CFG c

= = =

⋅ ⋅ = =
   (3) 

Parameter L is a normalizing factor whose value is 
computed by requiring all the “new” probabilities to sum 
up to 1. 

Figure 2: Scenario 1 – Probability distribution through scenario phases 



The system converges when the most probable 
candidate value (i.e., the one with the maximum 
probability) is being reinforced, while the probabilities 
of the other candidate values are either being reduced or 
reinforced less. After convergence, we limit the number 
of consecutive updates that can be applied on the 
probability associated with each candidate achievable 
bit-rate value. This is done for assisting fast adaptation 
to new conditions. For the same reason, we do not allow 
that a probability falls under a certain threshold, r/m, 
where 0<r<1 (m is the number of potential achievable 
bit-rate values). In such cases, the normalization factor, 
L, is computed by requiring all the other “new” 
probabilities to sum up to 1 ( / )k r m− ⋅ , where k is the 
number of probabilities that are assigned equal to the 
threshold. 

 

5 RESULTS 
Two comprehensive scenarios demonstrating the 

functionality of the proposed method are presented in 
this section. Our focus is on an arbitrary configuration cj. 
It is assumed that there are m=5 candidate achievable 
bit-rate values (in Mbps): abr1=0.384, abr2=0.768, 

abr3=1.152, abr4=1.536, abr5=1.920. Hence, Δa=1.536 
Mbps. Let it be noted that a denser grid of candidate 
values could have been selected, and also that the 
distance between two subsequent candidate values needs 
not be the same. Parameter r has been set equal to 0.1.  

Figure 2 depicts the distribution of the conditional 
probabilities in the framework of the first scenario. 
Initially, i.e. in phase 0 (time epoch 0), all candidate 
values are considered equally probable, thus the 
distribution is uniform and any value can be considered 
as the most probable one. Subsequently, the value of 
abrmeas in phase 0, denoted henceforth as abrmeas,0, 
together with the probability distribution of this phase, 
are taken into account in order to compute the 
probability distribution of phase 1, using relations (2) 
and (3). The same procedure is followed for all phases. 
The values of abrmeas per phase are: 0) abrmeas,0 = 0.920; 
1) abrmeas,1 = 0.920; 2) abrmeas,2 = 1.612; 3) abrmeas,3 = 
1.612; 4) abrmeas,4 = 1.612. I.e., in this scenario the value 
of abrmeas changes at a certain point from 0.920 to 1.612.  

As may be observed from Figure 2, abr2 is correctly 
selected in phase 1 as the most probable value. As was 
expected, there are high values for abr2 and abr3, a slight 
diminishment for abr1 and abr4, and a severe 
degradation for abr5. In phase 2, the scheme is further 

Figure 3: Scenario 2 – Probability distribution through scenario phases 



applied, and since abrmeas,1 = abrmeas,0, the most probable 
value does not change and is actually further reinforced. 
In phase 3, however, abrmeas,2 is 1.612, and abr3  is 
selected as the most probable value. It is important to 
notice that, although abr4 is closer to abrmeas,2, abr3 
(instead of abr4) is chosen as the most probable value. 
This constitutes the desired behaviour, i.e. to adapt 
gradually and not immediately, in order to avoid 
oscillations and smooth out temporary fluctuations. In 
the next phase, abr3 remains the most probable value, 
but abr4 is also reinforced considerably. Finally, in 
phase 5, the system converges to abr4, since the value of 
abrmeas has remained the same. We may also note from 
Figure 2 that, in the last two phases, the probability of 
abr1 has been set equal to the threshold’s value, i.e. 

1Pr[ | ] 0.1 0.2 0.02jABR abr CFG c= = = ⋅ = . 
Figure 3 depicts the distribution of the conditional 

probabilities in the framework of the second scenario. In 
this scenario, the values of abrmeas per phase are: 0) 
abrmeas,0 = 0.86; 1) abrmeas,1 = 0.84; 2) abrmeas,2 = 1.82; 3) 
abrmeas,3 = 0.85; 4) abrmeas,4 = 0.85. I.e., in this scenario 
the value of abrmeas features a temporary fluctuation in 
phase 2. 

As may be observed from Figure 3, abr2 is correctly 
selected in phase 1 as the most probable value. In phase 
2, the scheme is further applied, and the probability of 
abr2 is reinforced. In phase 3, the measurement of phase 
2, i.e. abrmeas,2, is taken into account, which results in 
selecting abr3 as the most probable value. Instead of 
selecting abr5, which is the closest to the measured 
value, abr3 is chosen, since this abrupt fluctuation may 
be due to a temporary situation (e.g., temporary 
reconfigurations of near-by reconfigurable network 
transceivers) or some measurement error. Hence, it is 
preferable to make gradual adaptations, instead of 
immediate ones. In the next phase (phase 4), the system 
gradually tends to adapt back to abr2. In phase 5, abr2 is 
further reinforced and becomes again the most probable 
one. 

 

6 CONCLUSIONS 
Cognitive radios seem a highly promising way 

towards handling the complexity of the B3G wireless 
landscape. Cognitive systems dynamically reconfigure 
the algorithms and parameters they use, in order to adapt 
to the changing environment conditions. However, 
making proper reconfiguration decisions presupposes a 
way of knowing, with high enough assurance, the 
capabilities of the alternative configurations, especially 
in terms of achievable bit-rate and coverage.  

This paper addresses this problem by incorporating the 
use of Bayesian Networks, in combination with an 
effective learning and adaptation strategy. Moreover, 
indicative results have been presented, demonstrating the 
method’s functionality. 
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