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Abstract—Beyond 3G (B3G) wireless connectivity can 

efficiently be realized by exploiting cognitive networking 
concepts. Cognitive systems dynamically reconfigure the 
Radio Access Technologies (RATs) and the spectrum 
they use, based on experience, in order to adapt to the 
changing environment conditions. However, dynamic 
reconfiguration decisions call for robust ‘discovery’ 
processes, i.e. stable and reliable schemes targeted for 
radio-scene analysis and channel identification. This 
paper aims at contributing in the areas of discovery: 
firstly, by explaining how a cognitive radio system can 
acquire interference and capacity estimations; and, 
secondly, by enhancing the above with a learning 
system, which is essential for obtaining a truly cognitive 
process. The proposed approach lies in the introduction 
of a robust probabilistic model for optimal prediction of 
the capabilities of alternative configurations, in terms of 
capacity. 
 

Index Terms— B3G wireless infrastructures, Bayesian 
networks, Capacity estimation, Cognitive radio, 
Interference temperature, Learning and adaptation, 
SINR estimation 
 

I. INTRODUCTION 
TODAY’S wireless access landscape comprises various 
access technologies: (a) 2G, 2.5G and 3G cellular systems 
(e.g., GSM, UMTS); (b) wireless access networks of 
different range capabilities (WLANs, WMANs, WPANs); 
and (c) broadcast networks, such as Digital Audio 
Broadcasting (DAB) and Digital Video Broadcasting 
(DVB). The evolution of the abovementioned wireless 
communication systems over the past years demonstrates a 
clear trend towards architectures that will support multiple 
access technologies, and multimode mobile terminal 
devices, i.e. capable of alternately operating in the diverse 
radio segments available in the infrastructure. This trend is 
often referred to as ‘systems beyond 3G’ (B3G), and its 
main notion is that a network operator can rely on multiple 
Radio Access Technologies (RATs) for achieving the 
desired capacity and Quality of Service (QoS), in a cost 
efficient manner [1]-[4].  

The need for this stems from the fact that each RAT is 
best suited for handling certain – but not all – situations, in 
terms of desirable capacity, coverage, mobility support and 
cost. Thus, in order to be competitive and raise customer 

satisfaction, a network operator will need to combine the 
benefits offered by different RATs.  

Reconfigurability is an effective response to tackle the 
complexity of operating within a heterogeneous 
environment. According to this notion, the network 
infrastructure consists of hardware elements (transceivers) 
capable of changing the RATs and spectrum they use, in 
order to better meet current requirements.  

However, in this context, a significant management issue 
arises: how to manage the reconfigurable elements in such a 
way so as to reach optimal configuration decisions. 
Therefore, a hardware element needs to be not only 
reconfigurable but also cognitive, i.e. aware of its RF 
environment and capable of adapting to the current needs 
and conditions.  

The need for cognition must also be implemented in a 
way that conforms to the autonomic computing paradigm. 
In this sense, each element should be able of self-adapting to 
its environment, without the need of being instructed by a 
central management entity with higher rationality. This 
presents the advantage of greater scalability and lower 
complexity.  

As outlined in [8] and [14], three fundamental cognitive 
tasks, tightly interconnected, are identified within the 
framework of cognitive radio.  
(a) Radio-scene analysis, which involves tuning to a 

frequency and measuring the interference levels 
perceived. 

(b) Channel identification, which encompasses channel 
capacity estimation, based on the levels of interference 
measured in (a). 

(c) Transmit-power control and dynamic spectrum 
management. 

This paper adopts the general terminology that cognitive 
tasks (a) and (b) can be referred to by the term ‘discovery’. 
Discovery is targeted to the identification of the capabilities, 
e.g. capacity and coverage, of the alternative configurations 
of a reconfigurable element. These capabilities change over 
time, since they are influenced by the element’s 
environment, including the behaviour of ‘near-by’ elements. 
Therefore, a reconfigurable element needs to monitor 
(sense) its environment and extract proper conclusions. This 
paper aims at contributing in the areas of discovery by: 
(a) explaining how a cognitive radio system can acquire 
interference and capacity estimations;  
(b) enhancing the above with a learning system, which is 
essential for obtaining a truly cognitive process. The 
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proposed approach lies in the introduction of a robust 
(stable and reliable) probabilistic model for optimal 
prediction of the capabilities of alternative configurations, in 
terms of capacity. The latter can then serve as input for 
reaching optimal configuration decisions. The overall idea is 
depicted in Figure 1. 

The remainder of this paper is structured as follows: 
Section II presents the channel quality metrics that can be 
used for radio-scene analysis, namely the signal-to-
interference-plus-noise ratio and the interference 
temperature, and then explains how interference estimations 
can be derived. Section III identifies how to obtain capacity 
estimations from the measured interference levels. Section 
IV describes the message exchange sequence for the radio-
scene analysis process of a cognitive radio system. Section 
V introduces the proposed probabilistic model for achieving 
robust capacity estimation. Section VI provides results that 
demonstrate the efficiency of the proposed model, and 
finally section VII concludes the paper. 
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Figure 1: The process of discovering reconfiguration 

capabilities in a cognitive radio system 
 

II. INTERFERENCE ESTIMATION METHODOLOGY 

A. Channel quality metrics 
Interference is inherent to all radio communications, 

hence there is need to utilize appropriate metrics reflecting 
its effect in signal transmission. The most widely used is the 
signal-to-interference-plus-noise ratio (SINR), represented 
by the ratio between the received wanted carrier signal 
power and the total received interference power [15].  

An alternative, recently proposed and highly promising, 
metric is the interference temperature (IT) [25]-[27], which 
is defined as: 

I
IT

kB
=  (1) 

where B represents a bandwidth in Hertz, I denotes 
interference power in Watts, and k is the Boltzmann’s 
constant. 

According to the FCC’s model, for a given frequency 
band in a given geographic location, an ‘interference 
temperature limit’ is defined by some regulatory agency. A 
transmitter should then ensure that by transmitting it does 
not raise the current IT above the specified IT limit [14]. 

B. SINR estimation 
Over the years, the SINR estimation problem has been 

discussed, in the literature, in some detail (e.g., [17]-[22]). It 
has been studied both for analog communication systems 
(e.g., AMPS) and, more recently, for digital Time Division 
Multiple Access (TDMA), Code Division Multiple Access 
(CDMA), and Orthogonal Frequency-Division Multiplexing 
(OFDM) based systems. 

In general, two strategies can be employed for achieving 

SINR estimations. The first is based on the transmission of 
pilot symbols (training sequences), whereas the second tries 
to derive the channel characteristics directly from the data 
symbols, i.e. the received signal, without the use of training 
sequences. The two strategies are often referred to in the 
literature as ‘non-blind’ and ‘blind’, respectively.  

A training sequence is a priori known to the receiver, thus 
the task of SINR calculation is made easier, since the 
receiver knows which symbols it is supposed to receive. 
Consequently, the use of training sequences allows for 
greater accuracy, but also introduces a significant overhead, 
which could be used instead for the transmission of 
additional data sequences [23]. In the cognitive radio 
context, the interference estimation part of the discovery 
procedure can be based solely on pilot transmission, since 
we are interested in the potential capabilities of alternate 
configurations. On the other hand, of course, interference 
estimation in the frequency band that is currently used for 
service delivery can follow either of the two strategies. 

C. Interference temperature estimation 
IT estimation is rather straightforward, compared to SINR 

estimation, as it only involves tuning to the frequency of 
interest and calculating the received signal energy. 
However, a significant issue related to the estimation of the 
current IT is that an IT measurement taken at the transmitter 
might be different from one taken at the receiver. Thus, in a 
worst case scenario, the current IT at the receiver’s location 
might be near the IT limit, whereas the current IT at the 
transmitter’s location might be significantly lower, leading 
the transmitter to wrongly declare the frequency band as 
usable. Although this unintentional interference is rather 
rare and small, yet future work will probably need to be 
conducted, in order to quantify it [26].  

As can be deduced from this, a reliable estimation of the 
current IT can be a challenging task. A more systematic 
approach is framed in [14], according to which a reliable 
spectral estimate of the IT can be achieved by: (a) using the 
‘multitaper’ spectral estimation procedure to estimate the 
power spectrum of the IT; and (b) using a large number of 
sensors to take measurements from the RF environment.  

The method in (a) is based on the use of multiple 
orthogonal windows (‘tapers’), for which more details can 
be found in [28]-[30]. Considering (b), the use of multiple 
sensors is feasible in an indoor environment, but may have 
to be restricted to a single sensor for outdoor environments. 
In the cognitive radio context, a group of user terminals 
may undertake the sensing task, i.e. sensing the RF 
environment and reporting the measurements to the 
reconfigurable element. The latter topic is further discussed 
in Section IV. 

 

III. CAPACITY ESTIMATION 
As a general rule, if the measured SINR is high or, 

equivalently, the measured IT is low, this allows for the 
employment of a more efficient (in terms of achievable 
capacity) modulation strategy (i.e., larger number of bits per 
symbol) and probably less redundancy (i.e., smaller number 
of parity bits). However, capacity estimation, on the basis of 
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SINR measurement, is not a trivial matter. Nonetheless, 
reliable results can be reached by employing any of the 
following strategies: (a) the Shannon-Hartley theorem; (b) 
the attainable data rate formula; or (c) the bit error 
probability diagrams of the candidate modulation schemes. 
Method (a) derives information-theoretic bounds on 
capacity, for given bandwidth and power constraints. 
Method (b) goes one step further, by taking into account the 
constraints of a physically realizable system. Method (c) 
illustrates how to select the most appropriate and efficient 
modulation scheme, depending on the circumstances. The 
aforementioned methods are described concisely in what 
follows.  
(a) Shannon-Hartley theorem: The concept of capacity 
estimation may be clarified by utilizing the Shannon-Hartley 
theorem, as implied in [14] and demonstrated in [27]. 
According to the celebrated theorem, given the bandwidth B 
in Hz, and the measured value of SINR, capacity C (in 
bits/s) is related as follows:  

2log (1 )C B SINR= +   (2) 
Alternatively, given the measured value TI of IT, (2) 

becomes:  

2 2log 1 log 1 S

I

LPSC B B
I kBT

⎛ ⎞⎛ ⎞= + = +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3) 

where PS is the transmit power in Watts and  is the 

power at the receiver’s location, with 
SS LP=
(0,1)L∈  

representing the signal attenuation due to path loss and 
shadowing.  
(b) Attainable data rate formula: In practice, a physically 
realizable encoding system must transmit data at a rate R (in 
bits/s) less than the maximum possible rate C (as given by 
(2) and (3)) for it to be reliable. Thus, for an implementable 
system operating at low enough probability of symbol error, 
a measure called ‘signal-to-noise ratio gap’, or just ‘gap’, is 
utilized [32]. The gap is denoted by  and is a function of 
the permissible probability of symbol error P

Γ
e and the 

encoding system of interest. It provides a measure of the 
efficiency of an encoding system with respect to the ideal 
transmission system of equation (2) or (3). The gap is 
defined as follows: 

/

/ /

2 1
2 1 2 1

C B

R B R B

SINR−
Γ = =

− −
  (4) 

Hence, equivalently it holds that:  

2log 1 SINRR B ⎛ ⎞= +⎜ ⎟Γ⎝ ⎠
  (5) 

As an example, for encoded Pulse Amplitude Modulation 
(PAM) or Quadrature Amplitude Modulation (QAM) 
operating at Pe = 10-6, the gap Γ  is fixed to 8.8 dB. 
Through the use of codes (e.g., trellis codes or turbo codes), 
nonetheless, the gap  may be reduced to as low as 1 dB.  Γ

However, through the use of codes, the actual data rate RI 
(in bits/s), i.e. the data rate of the information source, is 
lower than that given by (5), due to the presence of 
redundant bits. For a code that uses n-bit code words 
consisting of k message bits and n-k redundant bits, RI is 

given by: 

I
kR r R R
n

= ⋅ =   (6) 

where r represents the dimensionless ratio k/n and is known 
as the ‘code rate’. 
(c) Bit error probability diagrams: The goal of this 
method is to determine the most appropriate modulation 
scheme among the candidates. The proposed method to 
accomplish this stands as follows:  

Step (i): Based on the measured SINR, the Eb/N0 ratio, i.e. 
the energy per bit to noise power spectral density ratio, is 
determined as follows:  

2

0

2

1 ,    M-ary PSK, M-ary QAM
log

,    M-ary FSK
log

b

SINR
ME

MN SINR
M

⎧
⎪⎪= ⎨
⎪
⎪⎩

  (7) 

Step (ii): Based on the value of Eb/N0, the bit error 
probability Pb of each candidate modulation scheme is 
computed. Figure 2 is a plot of Pb vs. Eb/N0 for uncoded M-
ary Frequency Shift Keying (FSK), Phase Shift Keying 
(PSK) and QAM signals, in the case of coherent 
demodulation. Similar curves can be found in the literature 
for non-coherent demodulation. Also, if error control codes 
are used, different curves should be utilized, depending on 
the actual encoding scheme and code rate.  

 
Figure 2: Bit error probabilities for uncoded M-ary FSK, 
PSK and QAM, coherent demodulation - Adapted from [33]

 
Step (iii): The bit error probability Pb of each candidate 

modulation scheme is compared to the value of the bit error 
probability threshold Pb,thres, i.e. the maximum permissible 
bit error probability (e.g., Pb,thres

 = 10-5). For a candidate 
modulation scheme, if Pb>Pb,thres, then the modulation 
scheme is rejected.  

Step (iv): Among the acceptable modulation schemes, the 
one that provides the maximum bit rate R, given the 
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bandwidth B in Hz, is selected, according to: 

2

2

log ,    M-ary PSK, M-ary QAM
log ,   M-ary FSK

B M
R MB

M

⎧
⎪= ⎨
⎪⎩

  (8) 

In case that error control codes are in use, relation (6) 
should consecutively be used, in order to determine the bit 
rate of the information source. 

 

IV. INTERFERENCE SENSING PROCESS IN COGNITIVE RADIO 
SYSTEMS 

In the cognitive radio context, a reconfigurable 
transceiver of a B3G service area needs to be able to sense 
the capabilities of alternative configurations. For this 
reason, a few timeslots during its operation should be 
devoted to the execution of sensing procedures. Thus, a 
realistic proposal is to break up a transceiver’s operational 
time into ‘service provision timeslots’ (during which the 
transceiver serves the network traffic) and ‘sensing 
timeslots’ (during which the transceiver senses the 
interference levels of an alternative configuration), as 
depicted in Figure 3(a).  

Assume that a reconfigurable transceiver is currently 
operating under RAT r0 and is tuned to carrier frequency f0. 
This configuration will be denoted henceforth as (r0, f0). In 
addition, let us assume that the transceiver needs to sense 
the interference level of an alternative configuration (r, f), 
where (r, f) ≠ (r0, f0). Figure 3(b) and Figure 3(c) illustrate 
the interference sensing process on the uplink and downlink, 
respectively. The estimation of the SINR has to be carried 
out at the receiver, i.e. the transceiver on the uplink and the 
terminals on the downlink.  

 
Figure 3: Interference sensing process in a cognitive radio 

system: (a) notion of service provision timeslots and sensing 
timeslots; (b) process for the uplink; (c) process for the 

downlink 
 
In the first case, the transceiver instructs a group of 

terminals within its service area to temporarily change their 
configuration (i), and tune to (r, f). The transceiver itself 
also changes its configuration. Once the tuning has been 

accomplished (ii), each of the terminals transmits a training 
sequence back to the transceiver (iii), in order for the latter 
to estimate the SINR (iv). Once the sensing procedure is 
complete, both the terminals and the transceiver tune back 
to their previous configuration (r0, f0). Message (i) is 
transmitted under the configuration (r0, f0), while all other 
messages are exchanged under the configuration (r, f).  

In the second case, the process is initially similar (i and 
ii). Then, a training sequence is transmitted by the 
transceiver to the temporarily reconfigured terminals (iii). 
Next, the estimation of the SINR takes place at the terminal 
side (iv), and the results are relayed back to the network side 
(v).  

The number of terminals instructed to temporarily 
reconfigure may vary. In the simplest case, the sensing 
process may have to be confined to a single terminal. 
Moreover, instead of SINR estimation, an interference 
temperature measurement process may take place. In this 
case, the transmission of a training sequence is not needed. 
This leads to a considerable simplification of the overall 
process, especially for measurements on the uplink. 

 

V. THE PROBLEM OF ROBUST CAPACITY ESTIMATION 

A. The need for robustness 
Capacity estimation, on the basis of SINR and/or IT 

measurement, is a prerequisite for optimal configuration 
selection. However, the most recently measured (estimated) 
value of capacity is not necessarily the most accurate one. In 
practice, the estimated values can fluctuate (oscillate) due to 
measurement errors, as well as temporary changes in the 
environment. This yields the need for a more robust 
capacity estimation scheme. 

An essential requirement for such a scheme is to favour 
the autonomic computing paradigm [34]-[35], which is of 
high importance for cognitive radio systems. According to 
this paradigm, each B3G service area (i.e., cell) decides 
autonomously about the most appropriate configuration of 
its transceivers. This notion of ‘self-configuration’ is an 
efficient means for tackling complexity and scalability.  

Within this framework, the capabilities of candidate 
configurations, in terms of capacity, can change over time, 
as they are influenced by the varying conditions in the 
environment, especially the behaviour of “near-by” 
reconfigurable elements. The goal of ‘self-configuration’ is 
to enable all elements to act in a completely distributed 
(autonomic) manner. This poses a significant engineering 
challenge: how to increase the degree of assurance that, by 
assigning a certain configuration (r, f) to a reconfigurable 
transceiver, the resulting capacity will be the expected one 
(e.g., x Mbps). A probabilistic model, as well as a learning 
and adaptation strategy, should be adopted. The resulting 
problem is: Given a specific candidate configuration (r, f), 
how can the most probable value of the random variable 
“capacity” be predicted? 

In the following, this problem is solved through a robust 
learning and adaptation strategy, based on Bayesian 
networks [36], which are valuable tools for learning and 
reasoning through probabilistic relationships [37]-[38]. The 
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solution does not violate the autonomy of network elements. 
In fact, no cooperation (e.g., no message exchange) between 
the different network elements is needed. 

B. Formulation as a Bayesian network 
Figure 4(a) depicts a basic Bayesian network that is 

proposed for modelling the specified problem.  CAP is a 
random variable representing capacity. CFG is another 
random variable, representing a configuration, e.g. 
configuration (r, f) may be an instance of CFG. CFG is the 
Bayesian network’s predictive attribute (node), while CAP 
is the target attribute.  

The goal is the determination of the maximum value of 
the conditional probability . Therefore, a 
conditional probability table (CPT) is organized, the 
structure of which is depicted in 

Pr[ | ]CAP CFG

Figure 4(b). Each CPT 
refers to a particular RAT. Consequently, if R is the set of 
possible RATs, then |R| CPTs in total are required for the 
full information. Each column of the CPT refers to a 
specific configuration (i.e., RAT and carrier frequency). 
Each line of the CPT corresponds to a capacity value. In this 
sense, a discrete set of potential capacity values is defined. 
Each cell (intersection of line and column) provides the 
probability (likelihood) that the configuration 
(corresponding to the column) will achieve the potential 
capacity value (corresponding to the line). Given a 
configuration, the most probable value of capacity is the 
value that corresponds to the maximum conditional 
probability.  

Figure 4(b) is an example for an arbitrary RAT r1. With 
Fr1 denoting the set of spectrum carriers with which RAT r1 
may operate, the CPT consists of |Fr1| columns, 
corresponding to configurations c1=(r1, f1), …, c|Fr1|=(r1, 
f|Fr1|), and m lines, corresponding to capacity values cap1, 
cap2, …, capm. Without loss of generality, enumeration is 
done in ascending order, i.e. cap1 < cap2 < … < capm. In 
other words, capm is the maximum value. The cell at the 
intersection of line i and column j is a probability value. It 
expresses the likelihood that capacity capi will be achieved, 
given the fact that configuration cj has been selected. 
Formally, this is denoted as . Pr[ | ]i jCAP cap CFG c= =

C. Learning and adaptation process 
In the previous subsection, it was defined that the 

capabilities of configurations, in terms of capacity, are 
modelled through the CPTs. The next step is to describe 
how to update the CPTs. Figure 4(c) is the general 
representation of the process. This learning and adaptation 
process yields the robust methods for discovering the 
performance capabilities of candidate configurations. The 
update process takes into account the measurements 
(estimations) of the cognitive radio system and, more 
specifically, the “distance” (absolute difference) between 
each probable value and the measured value. 

Let us assume that measurements (obtained through the 
basic discovery-sensing functionality described in sections 
II, III and IV) show that a specific configuration can achieve 
capacity capmeas. This measurement can be exploited, in 
order to fine-tune (enhance or decrease) the values of the 
CPTs, so as to increase the degree of assurance of future 

predictions. Let difmax be the maximum difference between 
the probable capacity values, i.e. difmax = capm – cap1.  

Then, the following correction factor, cori, can be 
computed for each candidate capacity value capi:  

max

1 i me
i

cap cap
cor

dif
−

= − as   (9) 

It holds that 0≤cori≤1. A value close to 1 reflects that the 
corresponding candidate value capi is close to the measured 
value capmeas, thus it should be reinforced accordingly. The 
opposite stands for a value that is close to 0. 

The correction of the CPT values 
Pr[ | ]iCAP cap CFG=  can then be done as follows, for 
each candidate capacity value capi: 

Pr[ | ]
Pr[ | ]

i new

i i

CAP cap CFG
c cor CAP cap CFG old

= =
⋅ ⋅ =

  (10) 

where the parameter c is a normalizing factor whose value is 
computed by requiring all the “new” probabilities to sum up 
to 1. 

The system converges when the most probable candidate 
capacity value (i.e., the one with the maximum probability) 
is being reinforced, while the probabilities of the other 
candidate capacity values are either being reduced or 
reinforced less. After convergence, we limit the number of 
consecutive updates that can be done on the probability 
values associated with each capacity value. This is done for 
assisting fast adaptation to new conditions. For the same 
reason, we do not allow that a probability falls under a 
certain threshold, , where 0<a<1 (m is the number of 
potential capacity values). In such cases, the normalization 
factor, N, is computed by requiring all the other “new” 
probabilities to sum up to 1 ( , where k is the 
number of probabilities that are assigned equal to the 
threshold. 

/a m

/ )k a m− ⋅

 
Figure 4: (a) Basic Bayesian network for robust capacity 

estimation; (b) Sample of the conditional probability table 
for capacity; (c) Process for updating the CPT values 
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VI. RESULTS 
This section exhibits results on the efficiency of the 

robust discovery method. Two scenarios are realized. The 
first one aids in the comprehension of the proposed 
technique. The second one focuses on the evaluation of the 
scheme’s performance, concerning its adaptation speed 
when dealing with severe and permanent changes in the 
values of the measurements taken. In all the scenarios, 
parameter a has been set equal to 0.1. 

A. Scenario 1: Simple example 
This scenario helps the in-depth understanding of the 

proposed technique. Our focus is on an arbitrary 
configuration c1=(r1, f1). It is assumed that there are m=5 
candidate capacity values (in Mbps): cap1=0.5, cap2=1.0, 
cap3=1.5, cap4=2.0, cap5=2.5. Hence, difmax=2 Mbps. It 
should be noted that a denser grid of candidate values could 
be selected (actually, in this case our results would have 
been favoured). What is more, the distance between two 
subsequent candidate values needs not be the same. Also, 
only three consecutive reinforcements are allowed, after 
convergence. 

Figure 5(a)-(d) depicts the distribution of conditional 
probabilities in four cases. In each case capmeas is (in Mbps) 
1.2, 1.5, 2.1 and 0.75, respectively. The algorithm is applied 
in five phases of runs. Initially, the conditional probabilities 
are uniformly distributed, i.e. equal to 0.2, in all four cases 
(phase 1). By using (15), we calculate the correction factors. 
Then, by using (16), we compute the new (adjusted) 
conditional probabilities. The results for each case are 
further analyzed in the following. 

Figure 5(a) shows that the model correctly and quickly 
adapts to the situation, by selecting cap2 as the most 
probable value, in phase 2 (phase 1 represents the initial 
phase). As was expected, there are high values for cap2 and 
cap3, a slight diminishment for cap1 and cap4, and a severe 
degradation for cap5. As the scheme is further applied, and 
since capmeas does not change, the most probable value 
remains the same and is actually further reinforced. The 
learning and adaptation model accurately adapts to the 
second case also (Figure 5(b)), in which capmeas=1.5. There 
is peak at cap3, whereas cap2 and cap4 remain practically the 
same, and, finally, cap1 and cap5 suffer significant 
diminishment. Figure 5(c) shows the results from the third 
case, in which capmeas=1.8. The model quickly adapts to 
cap4, the probabilities that correspond to cap3 and cap5 are 
increased, while the probabilities of cap1 and cap2 drop. The 
model is also robust in the last, rather unlikely, case, in 
which capmeas=0.75 (Figure 5(d)). It suggests cap1 and cap2 
as the most likely values. The probability of cap3 is slightly 
increased, while the values of cap4 and cap5 are degraded. 

B. Scenario 2: Adaptation speed vs. number of 
consecutive reinforcements 
The main goal of this scenario is to examine how many 

steps it takes for the scheme to adapt to a new situation, and 
more specifically to a sudden large change in the 
environment conditions. 

 
Figure 5: Scenario 1 - Arbitrary configuration c1. 

Conditional probabilities corresponding to candidate 
capacity values, when capmeas is (in Mbps): (a) 1.2; (b) 1.5; 

(c) 2.1; (d) 0.75 
 

Figure 6(a)-(b) shows the speed of the adaptation when 
there is a sudden degradation of the measured capacity. In 
the Figure 6(a), we allow only three consecutive 
reinforcements of the most probable value, after 
convergence. In Figure 6(b), only one reinforcement is 
allowed. 

Figure 6(a) shows what happens when capmeas suddenly 
becomes 1.1 Mbps and constantly remains the same for all 
next series of measurements. Our starting point is the case 
depicted in Figure 5(c) (i.e., our model evolved as depicted 
in Figure 5(c), before the sudden change in capmeas). The 
goal is to examine how quickly the system can adapt and 
converge to cap2, which is the value that is nearest to 
capmeas. As can be observed, in 4 steps (phases 2-5) the most 
probable value drops from cap4 to cap3. In another 6 steps 
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(phases 6-11), candidate values cap2 and cap3 are suggested 
as the most likely ones. Finally, in the next step (phase 12), 
cap2 becomes the most probable one. 

Figure 6(b) shows what happens if only one 
reinforcement is allowed after convergence. Again, Figure 
5(c) is our starting point and capmeas is 1.1 Mbps. In just 2 
steps (phases 2-3), the most probable value drops from cap4 
to cap3. In another 3 steps (phases 4-6), cap2 almost reaches 
cap3, and in the next step (phase 7) cap2 becomes the most 
probable value. 

Another conclusion can be deduced from the simulations 
described in this subsection. The number of consecutive 
reinforcements, after convergence, clearly affects the 
model’s adaptation speed. High number of consecutive 
reinforcements reduces the adaptation speed. 

 
Figure 6: Scenario 2 - Arbitrary configuration c1. Learning 

and adaptation process when capmeas suddenly degrades 
from 2.1 to 1.1 Mbps. Speed of adaptation when the number 
of consecutive updates, after convergence, is: (a) three; (b) 

one 
 

VII. CONCLUSIONS 
B3G wireless connectivity can efficiently be realized by 

exploiting cognitive networking concepts [39]. Cognitive 
systems dynamically reconfigure the RATs and the 
spectrum they use, in order to adapt to the changing 
environment conditions. However, dynamic reconfiguration 
decisions call for robust discovery, i.e. radio-scene analysis 
and channel identification, schemes. This paper’s goal was 
to contribute in the areas of radio-scene analysis and 
channel identification: firstly, by explaining how a cognitive 
radio system can acquire interference and capacity 
estimations; and, secondly, by enhancing the above with a 
learning system, which is essential for obtaining a truly 

cognitive process. The proposed approach was to develop a 
robust probabilistic model for optimal prediction of the 
capabilities of alternative configurations, in terms of 
capacity. The approach relied on the use of basic Bayesian 
logic, in combination with a learning and adaptation 
strategy. Results that expose the behaviour and efficiency of 
the proposed scheme were also presented.  

The short-term future plan is to enrich the basic Bayesian 
model that has been described, by adding more nodes 
(random variables), including ‘coverage’ and ‘context’ (i.e., 
‘traffic’ and ‘user mobility’). The overall future plan is to 
further employ probabilistic relationships and autonomic 
computing principles in the direction of realizing cognitive, 
wireless access, infrastructures. The goal is to develop an 
autonomic manager which will encompass the robust 
estimation scheme. The manager will consist of policies, 
context perception capabilities, reasoning algorithms, 
learning functionality and knowledge engineering, 
technologies for the representation of ontologies and 
semantics. All these will yield a system that hypothesises on 
causes to a problem, and subsequently validates or falsifies 
the hypothesis. 
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