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Abstract. B3G (Beyond the 3rd Generation) wireless infrastructures shall be 
flexible enough, so as to adapt to environment requisitions. Flexibility can be 
efficiently realized by exploiting cognitive networking concepts. Cognitive, 
wireless access, infrastructures can dynamically select their configuration, in 
principle through self-management, realized in a distributed manner, at a 
maximum level of autonomy. This paper presents the fundamental components 
of the necessary management architecture in support of (re)-configuration 
decisions. Additionally, two essential aspects are addressed, i.e. (i) the 
provision of robust (stable, reliable), learning and adaptation, strategies for 
estimating (discovering) the performance potentials of alternate 
reconfigurations, and (ii) the description of a computationally efficient solution 
to the problem of exploiting the performance potentials of reconfigurations, 
rating reconfigurations, and in the end, selecting the best ones. Finally, results 
that showcase the behavior of the presented schemes, are indicated. 
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1. Introduction 

 
As globalization necessitates worldwide capabilities in communication technology, 
the world of telecommunications is currently undergoing some radical changes. 
Utmost research interest is attracted by wireless communications, bringing them at the 
forefront of technological evolution. The vision of future wireless networks is 
reflected upon a harmonized coexistence and cooperation of disparate Radio Access 
Technologies (RATs), basically consisting of cellular technologies [1] such as 3G/4G 
and different kinds of Broadband Wireless Access (BWA) technologies that have 
emerged [2] and are mainly represented by Wireless Local Area Networks (WLANs) 



and Wireless Metropolitan Area Networks (WMANs). The ultimate goal is to achieve 
ubiquitous wireless access and provision of pioneer services comparable to those 
traditionally offered through wired systems, by combining the benefits from all RATs 
that exist in such heterogeneous environments [3],[4]. 
Framed within this statement stands the migration of the wireless world towards the 
era of B3G (Beyond the 3rd Generation) wireless access communications. The main 
idea is that a Network Operator (NO) can rely on different RATs, for achieving the 
required capacity and quality of service (QoS) levels, in a cost efficient manner. Each 
distinct RAT has capabilities and characteristics, in terms of capacity, coverage, 
mobility support, cost, which make it more suitable for certain environment 
conditions / requirements. A NO can select those that are best suited for delivering 
capacity and QoS levels, given the current context. 
The B3G concept can be realized through cognitive (adaptive, reconfigurable) 
network concepts [5][6], in conjunction with network cooperation [7][8][9]. Cognitive 
networks, reactively or proactively, adapt to the environment requisitions, in 
principle, by means of self-configuration (self-management). Self-configuration is 
applied, for tackling complexity and scalability. Reconfiguration may affect all layers 
of the protocol stack, namely, the physical, MAC (Medium Access Control) and LLC 
(Logical Link Control), network, transport, middleware and application layers. 
The general definition of cognitive networks implies some very advanced capabilities 
in the specific case of cognitive, wireless access, networks, operating according to the 
B3G paradigm. As part of the reconfiguration, at the physical and MAC layers, there 
can be elements (hardware components, such as transceivers) that dynamically change 
the RATs they operate and the spectrum they use, in order to improve capacity and 
QoS levels. In other words, a hardware component (transceiver) will be changing 
RATs (and spectrum), in space and time, in order to adapt to new conditions. In this 
respect, it is believed that cognitive networks enable the realization of B3G 
infrastructures with reduced capital expenditures (CAPEX). 
The realization of cognitive networks calls for a thorough analysis of the management 
architecture in support of reconfiguration decisions, as well as its requisite 
functionality. This paper deals with both issues, by presenting the basic components 
of this architecture, as well as by addressing a problem targeted at the management of 
a reconfigurable network element, which operates and is managed in parallel with 
other elements. The problem is called “RAT and Spectrum selection, QoS assignment 
and Traffic distribution” (RSQT). Our focus is on a highly distributed problem 
version. Our scheme requires minimal interactions with other management/managed 
elements. Eventually, our goal is to employ autonomic computing concepts 
[10][11][12][13] in B3G infrastructures, in order to offer users with seamless mobility 
and experience.  
In summary, the organization of the paper is as follows. Section 2 presents the basic 
features of cognitive networks and describes their associated management architecture 
that operates in accordance with autonomics. Section 3 defines the RSQT problem 
outlining the two main parts of its solution. Section 4 describes the first main part of 
the RSQT solution, i.e., the robust methods for estimating the performance of 
reconfigurations. Section 5 is the second part of the RSQT solution, which is a 
computationally efficient algorithm to the problem of exploiting the capabilities of 
reconfigurations, as well as rating and selecting the best reconfigurations. Section 6 



provides results that show the behavior of our schemes, and section 7 includes 
concluding remarks. 

2.    Cognitive, Wireless Access Networks 

Cognitive wireless networks have been proposed for the realization of the B3G vision, 
with reduced CAPEX. This is achieved through their inherent ability to adapt to 
varying requirements (e.g., change RATs and spectrum at the PHY/MAC layers). 
 

A. Motivation and Features 
 
A complementary idea, to the cognitive network concept, is to merely have 
cooperating networks, operating different RATs. Then, the NO can select the best, 
among a set of alternate, cooperative networks, in order to offer the best possible 
services to its customers. However simple this may sound, the overall goal of 
providing seamless mobility and connectivity may still be difficult to achieve. The 
main reason is that mere cooperation, as described, implies that the entire set of RATs 
should be a priori deployed by the NO. This is not the most efficient way to reduce 
CAPEX.  
Cognitive wireless networks do not presume the fixed deployment of technologies in 
terminals and network segments; rather, they have embedded intelligence that enables 
them to learn, from previous interactions with the environment, and, based on those 
interactions, adapt their functionality according to different external stimuli. This is 
depicted in Fig. 1. Each segment is made up of cognitive elements. Each element and 
terminal is reconfigurable (can operate with alternate configurations) and has the 
intelligence to select the best configuration, in order to adapt to the environment 
conditions. In this context, reconfiguration at the PHY/MAC layers provides the 
ability to dynamically select the most appropriate RATs and spectrum, in order to 
better handle business-, service-, resource-, location-, and time-variant requirements. 

 

   



Fig. 1. Example of cognitive wireless network: elements may change RAT, frequency, or both, 
when new conditions are identified 

 
The alternative configurations that should be utilized are known by the cognitive 
elements, enabling context-aware selection. Configurations change in time and space. 
Reconfigurations are software-defined. Therefore, a reconfiguration is done by 
activating the appropriate software, which implements the selected RAT. 

B. End-to-End Management Architecture 

Since a cognitive network consists of numerous elements and terminals of highly 
heterogeneous natures, located in different places, a centralized management 
approach becomes prohibitively complex. Hence, distributed management 
approaches, relying on pertinent technologies, e.g. autonomic computing, are 
currently in the focus [11]. This approach can offer scalability and modularity 
(providing low complexity). Fig. 2 (a) depicts the overall management architecture of 
a B3G infrastructure.  
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Fig. 2. (a) Overall Management Architecture, (b) Management functionality for individual 
element / reconfigurable terminal 

Its entities are organized in a hierarchical manner that consists of three-tiers. At tier-1, 
each (red) entity controls a whole network segment (subset of the network). Tier-1 is 
made up of mechanisms whose primary purpose is to coordinate with the backbone 
network, as well as the decisions of tier-2 management entities. Accordingly, the 
entities at the second tier manage a particular reconfigurable network element (access 
point). The entities at the third tier are targeted to terminals. Tier-2 and tier-3 entities 
have the internal structure shown in Fig. 2 (b). 

• The “Monitoring - Discovery” component is set to continuously sense the 
environment, so as to discover the capabilities of alternate configurations. 

• The “Cooperation with other elements/NOs” component can communicate 
with other elements / NOs so as to acquire their requests, offers, etc. 

• The “Profiles, Policies, Goals” component provides user, application and 
element requirements and characteristics, as well as policies and business goals of the 
NO.  

• The “Negotiation, Selection and Reconfiguration Implementation” 
component decides upon and implements the changes to be made on the 
reconfigurable element, based on policies, profiles and the integrated learning 
capabilities. 
Cognitive radio architectural approaches should provide for the maximum possible 
individual as well as group operation, so as to decrease the system’s complexity and 
support its scalability. As already introduced, it is anticipated that such a fully-
distributed approach can be provided by the use of autonomic computing [10][13]. 
Autonomic Computing is derived from the human nervous system – just as the human 
nervous system performs involuntary actions (such as pumping blood) to free the 
human brain to address other tasks, autonomic computing systems perform tasks that 
previously required intensive manual operation (such as (re)configuring a device) to 
enable the autonomic system to perform more strategic tasks (such as optimization 
and planning). 

 

 
Fig. 3. Autonomic operation of cognitive element 

 
Local optimization is achieved by sending to entities the appropriate policies, which 
direct self-management towards a global operational goal. Ideally, the distributed 
decision entities have full knowledge of the context, thanks to cognitive support 



functionality (enhanced with learning capabilities). This is shown in Fig. 3, where 
cognition is reflected on a feedback loop (Observe- Plan- Act - OPA). 
In this context, the network continuously observes the environment, looking for 
potential changes that can affect its operation. Observations form the basis for 
initiating machine-based reasoning to see if the reconfiguration process should be 
invoked. Once the decision is taken, the network acts accordingly. This loop is 
repeated inside a machine learning process [14], which leads to cognition. The loop is 
guided by a set of goals, which take observations into account when planning actions.        
This section presented management architecture for cognitive wireless networks. The 
components of Fig. 2 should be further enhanced, primarily through autonomic-
computing and learning functionality, fine-tuned and validated. A basic model for 
discovering and selecting reconfigurations is presented in the next section. 

 

3. RSQT Problem Statement 

RSQT is seen as a main part of the management functionality required for taking 
reconfiguration decisions in the context of cognitive, infrastructures. Fig. 4 provides 
the overall problem description and the relevant data structures.  
 

Context
(traffic and mobility information, 

system aspects)

Context
(traffic and mobility information, 

system aspects)

Optimisation Functionality
(Algorithms, Objective function)

Optimisation Functionality
(Algorithms, Objective function)

Reconfiguration
(Overall solution, 3G technologies 

management, WMAN 
management)

Reconfiguration
(Overall solution, 3G technologies 

management, WMAN 
management)

Profiles 
(user classes, terminals, 

applications, element capabilities)

Profiles 
(user classes, terminals, 

applications, element capabilities)

Policies
(NOs policies, agreements)

Policies
(NOs policies, agreements)

Context
(traffic and mobility information, 

system aspects)

Context
(traffic and mobility information, 

system aspects)

Optimisation Functionality
(Algorithms, Objective function)

Optimisation Functionality
(Algorithms, Objective function)

Reconfiguration
(Overall solution, 3G technologies 

management, WMAN 
management)

Reconfiguration
(Overall solution, 3G technologies 

management, WMAN 
management)

Profiles 
(user classes, terminals, 

applications, element capabilities)

Profiles 
(user classes, terminals, 

applications, element capabilities)

Policies
(NOs policies, agreements)

Policies
(NOs policies, agreements)

Optimisation Functionality
(Algorithms, Objective function)

Optimisation Functionality
(Algorithms, Objective function)

Reconfiguration
(Overall solution, 3G technologies 

management, WMAN 
management)

Reconfiguration
(Overall solution, 3G technologies 

management, WMAN 
management)

Profiles 
(user classes, terminals, 

applications, element capabilities)

Profiles 
(user classes, terminals, 

applications, element capabilities)

Policies
(NOs policies, agreements)

Policies
(NOs policies, agreements)

 
Fig. 4. RSQT problem overview 

 
The input to the problem is classified into three main categories: (i) context; (ii) 
profiles; (iii) policies. 
The context part provides information on the candidate configurations of the element. 
In general, an arbitrary reconfigurable element, e , will have a set of transceivers, eT . 

Each transceiver, t ∈ eT , will be capable of operating a set of RATs, ( )tRe . 

Moreover, there is a set of spectrum carriers, ( )rtFe , , with which t  can operate 

RAT r . In general, for all t ∈ eT , ( )rtFe , ⊆ rF , where rF  is the set of spectrum 
carriers, with which RAT r  can be operated, e.g., due to regulation or technological 
reasons. Each transceiver, t , has a set of candidate configurations, ( )tCe . Each 



configuration, c∈ ( )tCe , is a set ( r , f ), where r ∈ ( )tRe  and f ∈ ( )rtFe , . 

Finally, the union of the sets above readily leads to the aggregate sets of RATs eR , 

carriers eF , and configurations eC , which can be used in e .  
Additionally, this part exploits basic monitoring information for estimating traffic 
requirements and mobility characteristics in the service area. Set eU  denotes the set 

of users in the service area of e . The set of services (applications) requested is eS . It 

is assumed that each user u ∈ eU  requests a service, ( )us ∈ eS . This model covers 
physical users that require more than one service. Regarding mobility, assuming a 
semi-stationary state has been reached, we can associate with each user u  a location 
( )ul . This is the subset of the service area, of reconfigurable element e , in which u  

is found. 
Furthermore, basic monitoring information for estimating the capabilities (capacity 
and coverage) of the candidate configurations are exploited. These capabilities can 
change over time, as they are influenced by the changing conditions in the 
environment, especially the behaviour of “near-by” elements. All elements act in a 
completely distributed (autonomic) manner. This poses a significant engineering 
challenge: how to increase the degree of assurance that, by assigning a certain 
configuration, c =( r , f ), to transceiver t  of e , the resulting capacity, ( )ccpe , and 

coverage, ( )ccve , will be, e.g., x  Mbps and y  km, respectively. A probabilistic 
model, as well as a learning and adaptation strategy, should be adopted. The resulting 
problem is: Given a specific candidate configuration c =( r , f ), how can we predict 
the most probable values of the random variables capacity and coverage?  
Section 0 solves this problem through a robust, learning and adaptation, strategy, 
based on Bayesian networks. Our solution does not violate the autonomy of network 
elements. In fact, no cooperation (e.g., no message exchange) between the different 
network elements is needed. Our schemes complement legacy schemes for the 
sensing (initial discovery) of the performance potentials of reconfigurations. 
Profiles and policies. This part describes the profiles (e.g., preferences, requirements, 
constraints) of user classes, applications and terminals, as well as the policies and 
agreements of the NO. Set ( )usQ ,  provides the target QoS levels at which service s  

( s ∈ eS ) should be offered to user u  ( u ∈ eU ). Set ( )usR ,  specifies the set of 
RATs, through which service s  can be offered to user u . The provision of service 
s , at QoS level q , to user u , is associated with a utility volume (importance), 

( )uqsuv ,, .  
The output of the problem is classified into the following categories: (i) transceivers 
reconfiguration; (ii) QoS assignment; (iii) traffic distribution.  
Transceiver reconfigurations. These are denoted as TCA = { ( )tce | t ∈ eT }. Each 

element of the set, ( )tce , is the overall reconfiguration of transceiver t , and 



corresponds to a pair [ ( )tre , ( )tf e ]. Functions ( )tre  and ( )tf e  are the RAT and 
spectrum, respectively, allocated to transceiver t . Each element of the set should 
respect the relation ( )tce ∈ ( )tCe , or equivalently, ( )tre ∈ ( )tRe  and 

( )tf e ∈ ( )[ ]trtF ee , . This guarantees compliance with the element capabilities (i.e., 
permissible allocations of RATs and spectrum to transceivers). 
QoS assignment. This is expressed through set UQA = { ( )uqe | u ∈ eU }. Function 

( )uqe  is the QoS level that will be offered to user u , by reconfigurable element e . 

Each function should preserve the relation ( )uqe ∈ ( )( )uusQ , , for ensuring 
compliance with the profiles and agreements, i.e., the provision of applications at the 
appropriate, acceptable QoS levels. 
Traffic distribution. Set TUA ={ ( )tue | t ∈ eT } expresses the new traffic distribution, 

due to the reconfiguration. Each element of TUA , ( )tue ⊆ eU , includes the users 

that will be served by transceiver t  of element e . For each u ∈ ( )tue , the relation 

( )tre ∈ ( )( )uusR ,  should hold. This guarantees the provision of applications 
through permissible RATs, in accordance with the (terminal) profiles, NO policies 
and agreements. In addition, the relation ( ) ( )( )UQee Atutcnr ,, ≤ ( )( )tccp ee  
guarantees that the capacity constraint of each transceiver is preserved. Function 
( )...nr  is kept flexible, in order to ensure applicability with various RATs.  

Objective function. The reconfiguration decisions should optimise an objective 
function that consists of two main parts. The first part is targeted to the maximisation 
of the aggregate utility volume deriving from the UQA  allocation 00. This is the 

quantity ( ) ( )[ ]∑
∈ eUu

e uuqusuv ,, . The rationale is that users should be assigned to 

their most preferred QoS levels, to the largest extent possible. (ii) The second part of 
the objective function is targeted to the minimization of the number of required 
changes. These changes are seen as the cost of reconfiguring the element, according 
to allocation TCA . The rationale is that among reconfigurations that exhibit the same 
performance, those that require fewer changes should be preferred. The number of 
changes can be linked with the RAT and spectrum changes in each transceiver (e.g., 
see Fig. 1).  

4.    Robust Discovery of Reconfiguration Capabilities 

This section presents the learning and adaptation method for robustly estimating the 
likelihood that the selection of a reconfiguration pattern is associated with a specific 
capacity and coverage. 



A. Formulation through Bayesian networks 

Fig. 5 depicts a Bayesian network that is proposed for modeling the specified 
problem. CAP  and COV  are random variables representing capacity and coverage, 
respectively. CFG  is another random variable representing a configuration, i.e. a 
combination of RAT and spectrum allocation.  

 

 
Fig. 5. Bayesian Network for RSQT 

CFG  is the Bayesian network’s predictive attribute (node), while CAP  and COV  
are the target attributes. The goal is the computation of the maximum value of the 
joint conditional probability [ ]CFGCOVCAP,Pr . In this subsection, we show 

that the desired probability [ ]CFGCOVCAP,Pr  is equivalent to the computation 

of the product of the conditional probabilities [ ]CFGCAPPr  and 

[ ]CFGCOVPr , i.e., 

[ ]CFGCOVCAP,Pr = [ ]CFGCAPPr · [ ]CFGCOVPr           (1) 
Relation (1) means that capacity and coverage can be decoupled. Two independent 
conditional probability tables (CPTs) can be organized, i.e. one for capacity and one 
for coverage. Each CPT refers to a particular RAT. Each column of the CPT refers to 
a specific configuration (i.e., RAT and carrier frequency). Each line of the CPT 
corresponds to a capacity (or coverage) value. In this sense, a discrete set of potential 
capacity values is defined. Each cell (intersection of line and column) provides the 
probability (likelihood) that the configuration (corresponding to the column) will 
achieve the potential capacity value (corresponding to the line). Given a 
configuration, the most probable value of the capacity is the value that corresponds to 
the maximum conditional probability. 
The proof of relation (1) starts from the joint probability formula, which suggests that: 
[ ]CFGCOVCAP ,,Pr = [ ]CFGCOVCAP,Pr · [ ]CFGPr                                     

(2) 
According to the Bayesian chain rule formula: 
[ ]CFGCOVCAP ,,Pr = [ ]CFGPr · [ ]CFGCOVPr · [ ]CFGCOVCAP ,Pr

                                                     (3) 
Hence, from (2) and (3):  



[ ]CFGCOVCAP,Pr = [ ]CFGCOVCAP ,Pr · [ ]CFGCOVPr   
                                                        (4) 
Assuming that capacity’s probable values are not dependent on coverage’s probable 
values, it can be deduced that: 
[ ]CFGCOVCAP ,Pr = [ ]CFGCAPPr            (5) 

The combination of relations (5) and (4) leads to relation (1). 

B.   Solution: learning and adaptation 

In the previous subsection, we defined that the capabilities of configurations are 
modeled through the CPTs. The next step is to describe how to update the CPTs. Fig. 
6 is the general representation of the process.  
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Fig. 6. Process for updating the CPT values 
 
This learning and adaptation process yields the robust methods for discovering the 
performance capabilities of candidate configurations. The update process takes into 
account the system’s measurements and, more specifically, the “distance” (absolute 
difference) between each probable value and the measured value.  
Let us assume that measurements (obtained through basic discovery-sensing 
functionality) show that a specific configuration can achieve capacity meascap . This 
measurement can be exploited, in order to fine-tune (enhance or decrease) the values 
of the CPTs, so as to increase the degree of assurance of future predictions. Let 

maxdif  be the maximum difference between the probable capacity values, i.e., 

maxdif = mcap - 1cap . 

Then, the following correction factor, icor , can be computed for each candidate 

capacity value icap : 

icor =1-
maxdif
capcap measi −                      (6) 



It holds that 0≤ icor ≤1. A value close to 1 reflects that the corresponding candidate 

value icap  is close to the measured value meascap , thus it should be reinforced 
accordingly. The opposite stands for a value that is close to 0. 
The correction of the [ ]CFGcapCAP i=Pr   values can then be done as follows 

for each candidate capacity value icap : 

[ ]
newi CFGcapCAP =Pr = nf · icor · [ ]

oldi CFGcapCAP =Pr                                   
(7) 
The parameter nf  is a normalizing constant whose value can be computed by 
requiring all the “new” probabilities to sum up to 1. 
The system converges when the most probable candidate capacity value (i.e. the one 
with the maximum probability) is reinforced, while the probabilities of the other 
candidate capacity values are either reduced or reinforced less. After convergence, we 
limit the number of consecutive updates that can be done on the probability values 
associated with each capacity value. This is done for assisting fast adaptation to new 
conditions. For the same reason, we do not allow that a probability falls under a 
certain threshold, ma , where 0< a <1 ( m  is the number of potential capacity 
values). In such cases, the normalization factor, nf , is computed by requiring all the 

other “new” probabilities to sum up to 1-( k · ma ), where k  is the number of 
probabilities that are assigned equal to the threshold. 

5.    Selection of Reconfigurations 

This section presents the second part of the solution of the RSQT problem. It exploits 
the potential capabilities of candidate reconfigurations. This yields a rating of 
reconfigurations, and eventually, leads to the selection of the best reconfigurations. 
In general, this part of the solution of the RSQT problem consists of four phases, for 
reduction of the associated complexity. 
The first phase finds different valid transceiver reconfigurations, which constitute 
sub-problems, to be launched in parallel. In each sub-problem, there is a certain 
transceiver configuration, i.e., an allocation of RATs and spectrum to transceivers. 
The capabilities of this configuration will be explored in the next two phases, and 
finally, the fourth phase will consist in the selection of the best solution  
In the second phase, in each sub-problem (i.e., for each transceiver configuration 
found in the first phase), there is an allocation of demand to transceivers, at the basic 
QoS levels. The configuration explored in the sub-problem has certain capabilities in 
terms of capacity and coverage.  Therefore, each user (demand portion) can be served 
by a set of transceivers. The user is allocated to the best transceiver according to the 
policy (e.g., selection of the one with the largest available capacity). The phase stops 
when all users are allocated to transceivers, or when the demand that cannot be served 
by the configuration exceeds a certain threshold.  



In the third phase, there are attempts to improve QoS (which was assigned at the basic 
level in the previous phase). QoS levels are gradually augmented, in a greedy manner, 
starting from those that lead to a larger increase in the utility volume (and hence, 
users’ satisfaction). The algorithm stops when no more QoS increase is possible, due 
to either user profiles, or available capacity. 
Finally, the fourth phase includes the selection of the best configuration. The 
configurations have scored a certain performance in the previous two phases. This 
performance derives from the provision of desired QoS levels. This is reflected in 
utility volumes. A policy based decision is required for selecting the best 
configuration. An approach can be to select the configuration that requires the least 
changes on the already established configuration. 
Essentially, the previous phases provide a rating of reconfigurations, with respect to 
the objective function. So the last, or fourth, phase selects the best reconfiguration, 
i.e., the reconfiguration with the highest objective function value. 

6.    Results 

This section presents results on the efficiency of the robust discovery and 
reconfiguration selection methods. 

A.    Robust discovery 

Four scenarios are realized. The scenarios are driven by the estimation of capacity’s 
conditional probability values. The coverage values can be determined in the same 
way. In all the scenarios, a  has been set equal to 0.1. 
Scenario 1. This scenario helps the in-depth understanding of our proposed technique. 
Our focus is on an arbitrary configuration 1c =( 1r , 1f ). It is assumed that there are 

m =5 candidate capacity values (in Mbps): 1cap =0.5, 2cap =1.0, 3cap =1.5, 

4cap =2.0, 5cap =2.5. Hence, maxdif =2 Mbps. It should be noted that a denser grid 
of candidate values could be selected (actually, in this case our results would have 
been favoured). What is more, the distance between two subsequent candidate values 
needs not be the same. Also, only three consecutive reinforcements are allowed, after 
convergence.  
 
Fig. 7 (a)-(b) depicts the distribution of conditional probabilities in two cases. In each 
case meascap  is (in Mbps) 1.2 and 1.5, respectively. 
 



 (a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.5 1 1.5 2 2.5

Capacity (Mbps)

C
on

di
tio

na
l P

ro
ba

bi
lit

y

Series1
Series2
Series3
Series4
Series5

(a) 

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 1 1.5 2 2.5

Capacity (Mbps)

C
on

di
tio

na
l P

ro
ba

bi
lit

y

Series1
Series2
Series3
Series4
Series5

 

(b) 

Fig. 7. Learning and adaptation of potential capabilities of arbitrary reconfiguration. 
Distribution of conditional probabilities corresponding to candidate capacity values, when   is 
sensed: (a) =1.2 Mbps; (b) 1.5 Mbps. 

The algorithm is applied in five series of runs. Initially, the conditional probabilities 
are uniformly distributed, i.e., equal to 0.2, in all scenarios (Series 1). By using (6), 
we calculate the correction factors. Then, by using (7), we compute the new 
(adjusted) conditional probabilities. The results for each case are further analyzed in 
the following.  
Fig. 7 shows that our model correctly and quickly adapts to the situation, by selecting 

2cap  as the most probable value, in the second series. As should be done, from the 

beginning there are high values for 2cap  and 3cap , a slight diminishment for 1cap  

and 4cap , and a severe degradation for 5cap . As the scheme is further applied, and 

since meascap  does not change, the most probable value is actually further 
reinforced. Our learning and adaptation model accurately adapts to the second case 
also, in which meascap =1.5. Quickly, there is peak at 3cap , whereas 2cap  and 

4cap  remain practically the same, and finally, 1cap  and 5cap  suffer significant 
diminishment.  



Scenario 2. The goal of this scenario is mainly to examine how many steps it takes for 
the scheme to adapt to a new situation, in other words, to a sudden big change in the 
environment conditions. Fig. 8 (a)-(b) shows the speed of the adaptation when there is 
a sudden degradation of the measured capacity. In the first figure, we allow only three 
consecutive reinforcements, of the most probable value, after convergence. In the 
second figure, only one reinforcement is allowed.  
Fig. 8 (a) shows what happens when meascap  suddenly becomes 1.1 Mbps. The goal 

is to examine how quickly the system can adapt and converge to 2cap , which is the 

most proper value, based on the measurements. Our starting point is when meascap  is 
1.1 Mbps. As can be observed in Fig. 8 (a), in 4 steps (Series 2-5) the most probable 
value drops from 4cap  to 3cap . In another six steps (Series 6-11), candidate value 

2cap  and 3cap  are suggested as the most likely ones. Finally, in the next step 

(Series 12) 2cap  becomes the most probable one. 
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Fig. 8. Learning and adaptation when the capacity of arbitrary reconfiguration   suddenly 
degrades from 2.1 to 1.1 Mbps. Speed of adaptation when the number of consecutive updates 
after convergence is: (a) three; (b) one. 

Fig. 8.(b) shows what happens if only one reinforcement is allowed after 
convergence. Again, our starting point is when meascap  is 1.1 Mbps. In just 2 steps 

(Series 2-3) the most probable value drops from 4cap  to 3cap . In another 3 steps 

(Series 4-6), candidate value 2cap  almost reaches 3cap , and in the next step (Series 

7) 2cap  becomes the most probable one. 
Another conclusion can be deduced from the aforementioned simulations. The 
number of consecutive reinforcements after convergence clearly affects the model’s 
adaptation speed. High number of consecutive reinforcements reduces the adaptation 
speed. 

B.   Reconfiguration selection - exploitation of reconfiguration capabilities 

Three scenarios are realized. Initially, we present the input to this phase. Then, we 
analyze the results from the scenarios. 
Context. We consider a simple service area that is covered by a network segment. The 
segment consists of a number of reconfigurable elements that operate in parallel. The 
behavior of these elements and the context information cause reconfiguration triggers 
to a random element, which will be in the focus of this subsection. Fig. 9 refers to the 
demand in the element’s service area.  

 
Data Voice  

% sessions % sessions 

 
Case1 

0 0 100 260 

Case2 6.5 16 93.5 228 

Case3 14 32 86 196 

Case4 23 48 77 164 

Case5 33 64 67 132 

Case6 45 80 55 100 

Case7 59 96 41 68 

Case8 76 112 24 36 



Case9 97 128 3 4 

Fig. 9. Demand in the element 

 
Nine different cases are studied. Each case corresponds to a different traffic mix 
(combination of voice and data sessions). Initially, the demand for voice dominates. 
Gradually, the demand for the data service dominates. The demand is taken uniformly 
distributed within the service area.  
Moreover, each element is equipped with 3 reconfigurable transceivers. Each 
transceiver may select between the two configurations studied in the previous sub-
section. In doing so, the resulting overall configurations for each element can be 
denoted as e.g. ( 1c , 1c , 2c ),  implying that two transceivers are assigned 

configuration 1c , while the third one is assigned configuration 2c  and so forth. 

Additionally, the assignment of configuration 2c  to all transceivers is not considered, 
since it would lead to coverage holes.   
As aforementioned, the configurations 1c  and 2c  have different capacity capabilities, 

1 or 2Mbps for 1c , and 4, 7 or 10Mbps for 2c . It is also assumed that 1c  can achieve 

larger coverage than 2c , i.e., the larger the capacity is, the smaller the coverage 
becomes.  
Profiles and Policies. Set eS  consists of two services, a voice service (s1) and a data 
service (s2). Whereas the voice service is associated with a fixed quality level, for the 
data service, a set of quality levels is provided. Moreover, s1 can only be offered 
through 1r  (therefore, configuration 1c ). Fig. 10 contains the acceptable QoS levels, 
the utility volume, whenever a service is offered at a certain QoS level, as well as the 
bandwidth requirements per service.  

 

 Voice (c1) Data (c1 or c2) 

QoS 
levels 

Bit Rate 
(kbps) 

Utility 
Volume 

Bit Rate 
(kbps) 

Utility 
Volume 

0 
16 1 32 2 

1   
64 4 

2   
128 8 

3   
256 16 



Fig. 10. Profiles and policies: services, QoS levels, utility volumes 

 
All in all, we are able to consider various scenarios, combining the capabilities 
(capacity and coverage) of the configurations, in order to see which configuration fits 
better the traffic mixes. 
Scenario 1. This scenario assumes that ( )1ccpe =1 Mbps and ( )2ccpe =4 Mbps. The 

coverage pattern for 1c  is about 1000m, and for 2c  about 500m. Fig. 11 shows 
indicative results.  
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Fig. 11. Scenario 1; objective function value achieved by configurations 

 
Configuration ( 1c , 1c , 1c ) increases the objective function value as the data load 
increases. This happens because, at the same time, voice load decreases, and 
therefore, there is spare capacity that can be exploited in offering higher QoS to more 
data sessions. At some point, the objective function value remains the same (cases 5-
8), since the increase deriving from new data sessions is compensated by the decrease 
in the voice sessions. Finally, in case 9, the data sessions have become so many, that 
for some users the QoS levels offered need to be degraded, compared to case 8, and 
thus, the objective function value decreases.  
The behavior of the ( 1c , 1c , 2c ) configuration is similar. Initially (cases 1-3), the 
configuration cannot handle the demand, because the voice load dominates and 
exceeds the capacity of the two 1c  transceivers. Starting from case 4, the voice 
sessions have decreased and can be accommodated by the two transceivers, 
configured with 1c . Consequently, ( 1c , 1c , 2c ) yields the highest objective function 
value. This occurs since the spare capacity is exploited for providing higher QoS to 
data services. Higher objective function values are achieved, compared to 
( 1c , 1c , 1c ), because ( )2ccpe  is higher. At some point the improvement stops, 
because the overall load is heavy, and therefore, some of the QoS levels have to be 
degraded again.  



Finally, configuration ( 1c , 2c , 2c ) exhibits an acceptable performance only at certain 
traffic mixes. Specifically, its objective function value is initially zero, until the voice 
sessions can be accommodated by a single 1c  transceiver. This occurs in case 7. 

Then, ( 1c , 2c , 2c ) proves itself to be appropriate, but only until the data sessions 

have become far too many and cannot be catered for by 2c ’s limited coverage (the 
distribution of users within the element is uniform). 
Comparing now the alternatives, we find that at the very initial demand patterns, the 
( 1c , 1c , 1c ) configuration performs better. However, as data sessions increase, the 

( 1c , 1c , 2c ) configuration becomes superior, due to the spare capacity that can 
upgrade QoS levels offered to continuously coming data sessions. This excellence of 
( 1c , 1c , 2c ) is though sometimes marginal compared to ( 1c , 1c , 1c ). Additionally, at 

certain traffic mixes with few voice and many data sessions, ( 1c , 2c , 2c ) exhibits the 
best performance, due to its large overall capacity. 
Scenario 2. This scenario assumes that ( )1ccpe =1 Mbps and ( )2ccpe =7 Mbps. The 

coverage pattern for 1c  is about 1000m, and for 2c  about 250m. Fig. 12 shows 
indicative results. 
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Fig. 12. Scenario 2; objective function value achieved by configurations 

 
The study of the curve, leads to conclusions that are similar to the ones obtained in 
scenario 1. Regarding configuration ( 1c , 1c , 1c ), exactly the same results are reached, 

as expected, since ( )1ccpe =1. So, configuration ( 1c , 1c , 1c ), the results are the same 

since ( )1ccpe =1. Regarding the ( 1c , 1c , 2c ) configuration, initially, it is 
inappropriate. Starting from case 4, its performance increases, along with the increase 
in the data sessions, up to the point where the system reaches its “pole” capacity. 
However, it should be noted that this configuration gives now higher objective 
function values than scenario 1, due to the fact that ( )2ccpe = 7 Mbps. Again, 



configuration ( 1c , 2c , 2c ) exhibits no performance at the initial traffic loads, and is, 
in general, appropriate only when voice sessions have decreased enough and can be 
served by a single 1c  transceiver. Moreover, ( 1c , 2c , 2c ) provides now a higher 

value in case 7 than in scenario 1 (due to the current higher ( )2ccpe  value), but 
proves itself inappropriate right after that, due to its restricted coverage capabilities 
that cannot cater for the uniformly distributed coming data sessions.  
In general, comparing again the available configurations, we find that at the very 
initial demand patterns, ( 1c , 1c , 1c ) outperforms the rest configurations. As data 

sessions increase, there is superiority of the ( 1c , 1c , 2c ) configuration, which is 

important compared to ( 1c , 1c , 1c ). Additionally, ( 1c , 2c , 2c ) performs better than 
the rest configurations at certain traffic mixes (case 7).  
Scenario 3. This scenario assumes that ( )1ccpe =2 Mbps and ( )2ccpe =4 Mbps. The 

coverage pattern for 1c  is about twice the coverage of 2c . Fig. 13 shows indicative 
results.  
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Fig. 13. Scenario 3; objective function value achieved by configurations 

 
Examining ( 1c , 1c , 1c ) at a first stage, the results obtained are naturally same in 

rationale as in the previous scenarios. However, the fact that ( )1ccpe =2 Mbps leads 
in general to a higher objective function value compared to the previous scenarios. 
Regarding ( 1c , 1c , 2c ), it can be put into effect also from case 3, since the larger 

capacity of the 2 1c  transceivers is enough for the existing voice sessions. Finally, 

( 1c , 2c , 2c ) still remains appropriate only in certain traffic patterns. Specifically, it 
could be taken into consideration only in cases 6, 7 and 8, where, on one hand, voice 
sessions can be efficiently served by one 1c  transceiver, whilst data sessions fall 

within 2c ’s coverage area. Much to our anticipation, this curve moves to the left in 



comparison to scenarios 1 and 2 (where ( )1ccpe =1 Mbps), justified by the fact that 

now a single 1c transceiver can accommodate more voice sessions than before. 
The comparison among the configurations examined, shows again that at the very 
initial demand patterns, ( 1c , 1c , 1c ) outperforms the rest configurations. As data 

sessions increase, there is a considerable superiority of the ( 1c , 1c , 2c ) configuration, 

even more important than in scenarios 1 and 2, due to the large capacity of 1c .  The 

( 1c , 2c , 2c ) configuration performs better than the rest configurations at certain 
traffic mixes (cases 6 and 7), since it can more efficiently guarantee the desired 
utility.  

7.    Conclusion 

B3G wireless infrastructures can be efficiently realized by exploiting cognitive 
network concepts. Cognitive, wireless access, infrastructures dynamically reconfigure 
to the appropriate RATs and spectrum, in order to adapt to the environment 
requirements and conditions. Reconfiguration decisions call for advanced 
management functionality. This paper provided such management functionality by 
addressing a pertinent problem, called “RAT and Spectrum selection, QoS assignment 
and Traffic distribution” (RSQT). We formally defined and solved a fully distributed 
problem version. We proposed robust (stable, reliable), learning and adaptation, 
strategies for estimating (discovering) the performance potentials of alternate 
reconfigurations. We gave a computationally efficient solution to the problem of 
exploiting the performance potentials of reconfigurations, and presented results that 
expose the behaviour and efficiency of our schemes. 
One of our future plans is to further employ autonomic computing principles in the 
direction of realizing cognitive, wireless access, infrastructures. Our goal is to 
develop an autonomic manager, which will encompass the RSQT scheme. The 
manager will consist of policies, context perception capabilities, reasoning 
algorithms, learning functionality and knowledge engineering, technologies for the 
representation of ontologies and semantics. All these will yield a system that 
hypothesises on causes to a problem, and subsequently, validates or falsifies the 
hypothesis.  
Another issue for future study is to complement the distributed RSQT scheme with a 
second tier of, more centralised, management functionality. The centralised 
functionality will be invoked when the distributed components cannot converge to 
acceptable solutions. The synergy of the two tiers will guarantee that whenever the 
distributed components diverge from the near-optimal performance levels, the 
application of the second tier will restore the performance to the desired levels.  
Another issue for further study is to exploit the RSQT scheme for enabling NOs to 
personalise their service offerings, instead of limiting subscribers to a fixed set of 
inflexible choices. Seamless mobility applications can build on schemes like RSQT to 



intelligently change the services that they provide based on business policies and 
context.  
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