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Abstract—B3G (Beyond the 3rd Generation) wireless 

infrastructures are increasingly aligned with cognitive 
networking principles. Cognitive networks dispose mechanisms 
for dynamically selecting their configuration (algorithms and 
parameter values, at different layers of the protocol stack), 
through appropriate management functionality that takes into 
account the context of operation, profiles, goals and policies. This 
paper focuses on such management functionality by addressing a 
pertinent problem, dealing with “Distributed, Cross-Layer 
Reconfigurations” (DCLR). Our work contributes in four main 
areas. First, we formally define and solve a fully distributed 
problem version, which is very important for the management of 
a particular reconfigurable element, in a cognitive context. 
Second, we propose robust (stable, reliable), learning and 
adaptation, strategies for estimating (discovering) the 
performance potentials of alternate reconfigurations. Third, we 
give a computationally efficient solution to the problem of 
exploiting the performance potentials of reconfigurations, rating 
reconfigurations, and finally, selecting the best ones. Finally, we 
present results that expose the behavior of our schemes. 
 

Index Terms— Cognitive networks, Cross-layer optimization, 
Utility, Learning and Adaptation, Bayesian networks 

I. INTRODUCTION 

MMENSE research and development effort is being 
dedicated to the development of new wireless networking 

technologies, in order to deliver powerful and affordable, 
high-speed, wireless access solutions. Currently, the wireless 
access landscape includes a multitude of technologies 
available to the mean user. Moreover, the wireless world is 
migrating towards the era of B3G (Beyond the 3rd 
Generation) [1] wireless access communications. The 
motivation is to increase the exploitation of the available 
technologies. The main idea is that a network operator (NO) 
can rely on different radio access technologies (RATs), for 
achieving the required capacity and QoS (Quality of Service) 

                                                           
 

levels, in a cost efficient manner. The B3G concept can be 
realized through cognitive (adaptive, reconfigurable) 
networking potentials [2][3][4][5][6]. Cognitive networks, 
reactively or proactively, adapt to the environment 
requisitions, by means of self-configuration. Self-
configuration is applied, for tackling complexity and 
scalability. Reconfiguration may affect all layers of the 
protocol stack. Specifically, as part of the reconfiguration, at 
the physical and MAC layers, there can be elements (hardware 
components, such as transceivers) that dynamically change the 
RATs they operate and the spectrum they use, in order to 
improve capacity and QoS levels. In this respect, it is believed 
that cognitive networks enable the realization of B3G 
infrastructures with reduced capital expenditures (CAPEX). 

The realization of cognitive, wireless access, networks 
requires advanced management functionality, which will be in 
charge of finding the best reconfigurations. This paper 
provides such management functionality, by addressing an 
important problem for the management of a reconfigurable 
network element, which operates and is managed in parallel 
with other elements. The problem is called “Distributed, Cross 
Layer Reconfigurations” (DCLR). Capabilities are exploited 
in the provision of the highest possible QoS levels, at the 
appropriate capacity levels. This exploitation yields a rating of 
the candidate reconfigurations, and leads to the selection of 
the best one. 

The organization of the paper is as follows. Section II 
presents the motivation for this work and describes the overall 
context of the DCLR problem. Section III defines the DCLR 
problem, and outlines the two main parts of its solution. 
Sections IV and V describe the two solution parts in detail. 
Section VI provides results that show the behavior and 
efficiency of our schemes, and section VII includes 
concluding remarks. 
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II. MOTIVATION AND HIGH LEVEL PROBLEM DESCRIPTION 
In general, cognitive systems determine their behavior, in a 
reactive or proactive manner, based on external stimuli, goals, 
principles, capabilities and experience. In the case of cognitive 
networks, this definition can be translated as the capability to 
dynamically select the network’s configuration, through 
appropriate management functionality that takes into account 
the context of operation, profiles, goals and policies, and 
machine learning.  
As can be deduced from the definitions above, cognitive 
networks consist of reconfigurable platforms and management 
functionality. The role of reconfigurable platforms is to enable 
the dynamic selection of the appropriate configurations. As 
can be shown in Fig. 1, a cognitive element, according to 
requirements, is based on a reconfigurable platform and thus 
may   (i)   change the RAT it operates with and maintain the 
spectrum, (ii) maintain the RAT and change the spectrum and   
(iii) change both, RAT and spectrum.  

 
Fig. 1: Role of reconfigurable platforms 
In the light of the above, each element may be multi-standard. 
Only a subset of technologies is used, namely those that are 
most appropriate for the context of operation. Specifically, 
each element is controlled by management functionality that 
has to solve a problem of cross-layer flavor. The functionality 
helps the network to continuously observe the environment, 
looking for potential changes that can affect its operation. 
Observations form the basis for initiating machine-based 
analysis (reasoning) to see if the reconfiguration process 
should be invoked. Once the decision is taken, the network 
acts accordingly. This loop [6] can be augmented by a 
machine learning process [7], which leads to cognition. The 
loop is guided by a set of policies and goals. Fig. 2 provides 
the overall description of the management functionality 
(DCLR) proposed in this paper.  

 
Fig. 2: The DCLR problem 
The proposed management mechanisms undertake decisions 
that affect the protocol stack in a cross-layer fashion. The next 
section, accordingly, describes the DCLR problem in detail 

with the input and the output (decisions for element 
reconfiguration); sections 4 and 5 present the solution. 

III. DCLR PROBLEM STATEMENT 

A. DCLR input 
The input is classified in three main categories: (i) monitoring, 
(ii) discovery, and (iii) profiles.  
Monitoring. This part gathers monitoring information for 
estimating traffic and mobility characteristics in the service 
area. This includes the users and the services requested. 
Regarding mobility, assuming a semi-stationary state has been 
reached, we can associate each user with a location. 
Discovery. This part exploits basic monitoring information for 
estimating the capabilities (achievable bit rate) of the 
candidate configurations. These capabilities can change over 
time, as they are influenced by the changing conditions in the 
environment, especially the behavior of “near-by” elements. 
This poses a significant engineering challenge: how to 
increase the degree of assurance that, by assigning a certain 
configuration c  (combination of RAT r  and frequency f ) 
to a transceiver of an arbitrary element, the resulting 
maximum achievable bit rate will be, e.g., x  Mbps and y  
km, respectively. Section IV solves this problem through a 
strategy based on Bayesian networks [8]. 
Profiles. This part provides information on the candidate 
configurations of the element (element profiles), such as the 
set of transceivers of the element, the set of operating RATs, 
as well as the set of spectrum carriers. Moreover, this part also 
describes the profiles (e.g., preferences, requirements, 
constraints) of user classes, applications and terminals, as well 
as the policies and agreements of the NO.  

B. DCLR output 
Reconfiguration decisions comprise: (i) transceiver 
reconfigurations; (ii) QoS assignment; (iii) traffic distribution.  
Transceiver reconfigurations. These denote the allocation of a 
certain configuration to each transceiver. 
QoS assignment. This is associated with the allocation of 
applications to QoS levels. 
Traffic distribution. Finally, users are allocated to transceivers. 
This is aligned with the provision of applications through 
permissible RATs, in accordance with the (terminal) profiles, 
NO policies and agreements.  
Objective function. The reconfiguration decisions should 
optimize an objective function that consists of two main parts. 
(i) The first part is targeted to the maximization of the 
aggregate utility volume. The rationale is that users should be 
assigned to their most preferred QoS levels, to the largest 
extent possible. (ii) The second part of the objective function 
is targeted to the minimization of the number of required 
changes. These changes are seen as the cost of reconfiguring 
the element. The rationale is the preferred reconfigurations are 
those that require fewer changes should be preferred. 

IV. ROBUST DISCOVERY OF RECONFIGURATION CAPABILITIES 
This section presents the learning and adaptation method for 
estimating the likelihood that reconfiguration c  is associated 
with achievable bit rate ( )ebr c . 
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A. Formulation through Bayesian networks 
 
Let CFG  be a random variable, representing the configuration 
that is probed, and BR  be another random variable 
representing a configuration’s capability, namely, the 
achievable bit-rate. It can be assumed that CFG  is the 
Bayesian network’s predictive attribute (node), while BR  is 
the target attribute. The method relies on the constant update 
and maintenance of conditional probability values of the form 
Pr BR CFG⎡ ⎤⎣ ⎦ . 

A conditional probability table (CPT) can, therefore, be 
organized. Fig. 3 depicts the structure of the CPT. Each 
column of the CPT refers to a specific configuration. If there 
are n  possible configurations, the CPT will include n  
columns. Each line of the CPT corresponds to an achievable 
bit-rate value. Note that a discrete set of m  reference bit-rate 
values can be defined (also for reducing complexity Without 
loss of generality, enumeration can be done in ascending order 
(i.e., 1br < 2br <…< mbr ). The cell at the intersection of line j  
(1≤ j ≤m ) and column i  (1≤ i ≤ n ) provides the value of the 
conditional probability Pr j iBR br CFG cfg= =⎡ ⎤⎣ ⎦ . It expresses the 

probability that bit-rate jbr  will be achieved, given that 
configuration icfg is selected.  

 … icfg  … 

1br  … [ ]1Pr iBR br CFG cfg= =  … 

2br  … [ ]2Pr iBR br CFG cfg= =  … 

… … 
jbr  … Pr j iBR br CFG cfg= =⎡ ⎤⎣ ⎦  … 

… … 
mbr  … [ ]Pr m iBR br CFG cfg= =  … 

Fig. 3: General CPT structure 
Given a configuration, the most probable achievable bit-rate is 
the one that is associated with the maximum conditional 
probability in the respective column. In order to take into 
account different contexts (e.g., times in the day) there can be 
several CPTs. Moreover, the CPT can also be maintained as a 
list, sorted in descending order of the probabilities. 
Configuration and bit rate pairs with high probabilities can be 
in the top of the list, in order to enable fast configuration 
selections. 

B. Solution: Learning and Adaptation Strategy 
The capabilities of configurations are provided by the CPT. 
The next step is to describe how to update the CPT, taking into 
account the measurements (environment sensing) of the 
cognitive radio system and, more specifically, the “distance” 
(absolute difference) between each reference value and the 
measured value. 
Let us assume that an environment sensing shows that a 
specific configuration can achieve bit-rate measbr . This 
measurement can be exploited, in order to fine-tune (enhance 
or decrease) the values of the CPT, and therefore, increase the 
confidence of the capability estimations. Let maxdif  be the 

maximum difference between the reference bit-rate values, i.e. 
maxdif = mbr – 1br .  

Then, the following correction factor, jcor , can be computed 
for each reference achievable bit-rate value jbr :         

jcor =1– 
maxdif
brbr measj −

     (1) 

It holds that 0≤ jcor ≤1. A value close to one reflects that the 
corresponding reference value jbr  is close to the measured 
value measbr , thus the corresponding conditional probability 
value should be reinforced accordingly. The opposite stands 
for a value that is close to zero. Given a candidate 
configuration icfg , the correction of the CPT values can then 
be done as follows, for each candidate value jbr : 

[ ]newij cfgCFGbrBR ==Pr = 

L ⋅ jcor ⋅ [ ]oldij cfgCFGbrBR ==Pr   (2) 
Parameter L  is a normalizing factor that guarantees that all 
the “new” probabilities sum up to one. The system converges 
when the conditional probability of the reference value, which 
is closest to the measured value, becomes the highest. At this 
point, the probabilities of the other candidate, reference values 
are either being reduced or reinforced less. After convergence, 
there can be a limit on the number of consecutive updates that 
can be applied on the conditional probabilities. This will assist 
fast adaptation to change in conditions. For the same reason, 
the minimum probability of a reference bit-rate value may not 
fall under a certain threshold, a / m , where 0≤ a ≤1 ( m  is the 
number of reference bit-rates). In such cases, the 
normalization factor, L , is computed by requiring all the other 
“new” probabilities to sum up to 1-( k ⋅ a / m ), where k  is the 
number of probabilities that are assigned equal to the 
minimum threshold. 
 

V. SELECTION OF RECONFIGURATIONS 
 
This section exploits the potential capabilities of candidate 
reconfigurations. This yields a rating of reconfigurations, and 
eventually, leads to the best reconfigurations. In general, this 
part of the solution of the DCLR problem consists of four 
phases (Fig. 4).  
The first phase finds different valid transceiver 
reconfigurations, each one constituting a sub-problem, subject 
to parallel processing.  
In the second phase, in each of the sub-problems, the demand 
distribution, is computed. At this phase, the QoS levels offered 
to users are kept to their lowest acceptable values. If a solution 
cannot be provided under these conditions, the reconfiguration 
is rejected. 
Then, in the third phase, the QoS level offered to users is 
gradually improved, until either no further increase is possible 
(users are at the maximum QoS level) or there is no more 
capacity available.  
Essentially, the previous phases provide a rating of 
reconfigurations, with respect to the objective function. So the 
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last, or fourth, phase selects the best reconfiguration, i.e., the 
reconfiguration with the highest objective function value. 
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Fig. 4: Strategy for the solution of the problem 
 

VI. RESULTS 

A. Robust Discovery 
An indicative scenario is realized, driven by the estimation of  
the conditional probability values. In all scenarios, parameter 
a  has been set equal to 0.1. The selected scenario helps the 
in-depth understanding of our proposed technique. Our focus 
is on an arbitrary configuration 1c =( 1r , 1f ). It is assumed that 

there are m =5 candidate BR values (in Mbps): 1br =0.5, 

2br =1.0, 3br =1.5, 4br =2.0, 5br =2.5. Hence, maxdif =2 
Mbps. It should be noted that a denser grid of candidate values 
could be selected (actually, in this case our results would have 
been favored). What is more, the distance between two 
subsequent candidate values needs not be the same. Also, only 
three consecutive reinforcements are allowed, after 
convergence.  
Fig. 5 depicts the distribution of conditional probabilities in 
four cases. In each case measbr  is (in Mbps) 1.2, 1.5, 2.1 and 
0.75, respectively. The algorithm is applied in five steps. 
Initially, the conditional probabilities are uniformly 
distributed, i.e. equal to 0.2 (step 1). We calculate the 
correction factors and then we compute the new (adjusted) 
conditional probabilities. The results are further analyzed in 
the following. Fig. 5 shows that our model correctly and 
quickly adapts to the situation, by selecting 2br  as the most 
probable value, in the second step. As should be done, from 
the beginning there are high values for 2br  and 3br , a slight 

diminishment for 1br  and 4br , and a severe degradation for 

5br . As the scheme is further applied, and since measbr  does 
not change, the most probable value is actually further 
reinforced. 

 
Fig. 5: Robust learning and adaptation - results 

B. Reconfigurations Selection 
A simple service area is covered by a network segment. The 
segment consists of a number of reconfigurable elements. 
Elements operate in parallel. The behavior of these elements 
and the service area requirements cause reconfiguration 
triggers, which will be in the focus of this subsection. The 
demand in the element’s service area includes nine different 
cases studied, each one corresponding to a different traffic mix 
(combination of voice and data sessions). Initially, the demand 
for voice dominates. Gradually, the demand for the data 
service dominates. The demand is taken uniformly distributed 
within the service area.  
Each element is equipped with 3 reconfigurable transceivers. 
Each transceiver may select between two configurations. In 
doing so, the resulting overall configurations for each element 
can be denoted as e.g. ( 1c , 1c , 2c ),  implying that two 

transceivers are assigned configuration 1c , while the third one 

is assigned configuration 2c  and so forth. Additionally, the 

assignment of configuration 2c  to all transceivers is not 
considered, since it would lead to coverage holes.  As 
aforementioned, the configurations 1c  and 2c  have different 

bit rate capabilities, 1 or 2Mbps for 1c , and 4, 7 or 10Mbps 

for 2c . It is also assumed that 1c  can achieve larger coverage 

than 2c , i.e., the larger the capacity is, the smaller the 
coverage becomes.  
Finally, two services are available, a voice service (s1) and a 
data service (s2). Whereas the voice service is associated with 
a fixed quality level, for the data service, a set of quality levels 
is provided. Moreover, s1 can only be offered through  
configuration 1c . 
All in all, we are able to make scenarios, combining the 
capabilities of the configurations, in order to see which 
configuration fits better the traffic mixes. Such a scenario 
would assume that ( )1ebr c =1 Mbps and ( )2ebr c =4 Mbps. 

The coverage pattern for 1c  is about 1000m, and for 2c  about 
500m. Fig. 6 shows indicative results.  
Configuration ( 1c , 1c , 1c ) increases the objective function 
value as the data load increases. This happens because, at the 
same time, voice load decreases, and therefore, there is spare 
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capacity that can be exploited in offering higher QoS to more 
data sessions. 
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Fig. 6: Reconfigurations Selection - Results 
At some point, the objective function value remains the same 
(cases 5-8), since the increase deriving from new data sessions 
is compensated by the decrease in the voice sessions. In case 
9, the data sessions have become so many, that for some users 
the QoS levels offered need to be degraded, compared to case 
8, and the objective function value decreases.  
The behaviour of the ( 1c , 1c , 2c ) configuration is similar. 
Initially (cases 1-3), the configuration cannot handle the 
demand, because the voice load dominates and exceeds the 
capacity of the two 1c  transceivers. Starting from case 4, the 
voice sessions have decreased and can be accommodated by 
the two transceivers, configured with 1c . Consequently, 

( 1c , 1c , 2c ) yields the highest objective function value. This 
occurs since the spare capacity is exploited for providing 
higher QoS to data services. Higher objective function values 
are achieved, compared to ( 1c , 1c , 1c ), because ( )2ccpe  is 
higher. At some point the improvement stops, because the 
overall load is heavy, and therefore, some of the QoS levels 
have to be degraded again.  
Finally, configuration ( 1c , 2c , 2c ) exhibits an acceptable 
performance only at certain traffic mixes. Specifically, its 
objective function value is initially zero, until the voice 
sessions can be accommodated by a single 1c  transceiver. 

This occurs in case 7. Then, ( 1c , 2c , 2c ) proves itself to be 
appropriate, but only until the data sessions have become far 
too many and cannot be catered for by 2c ’s limited coverage 
(the distribution of users within the element is uniform). 
Comparing now the alternatives, we find that at the very initial 
demand patterns, the ( 1c , 1c , 1c ) configuration performs 

better. However, as data sessions increase, the ( 1c , 1c , 2c ) 
configuration becomes superior, due to the spare capacity that 
can upgrade QoS levels offered to continuously coming data 
sessions. This excellence of ( 1c , 1c , 2c ) is though sometimes 

marginal compared to ( 1c , 1c , 1c ). Additionally, at certain 
traffic mixes with few voice and many data sessions, 
( 1c , 2c , 2c ) exhibits the best performance, due to its large 
overall capacity. 

VII. CONCLUSIONS 
B3G infrastructures can be efficiently realized by exploiting 
cognitive networking potentials. Cognitive, wireless access, 
infrastructures dynamically reconfigure to the appropriate 
RATs and spectrum, in order to adapt to the environment 
conditions and requirements. This is achieved by disposing 
reconfigurable platforms, controlled and supported by 
advanced management functionality. This paper provided such 
management functionality by addressing a problem, defined 
and solved by proposing robust learning and adaptation 
strategies for estimating the performance potentials of 
alternate reconfigurations. We gave an efficient solution to the 
problem of exploiting those potentials, and presented results 
that expose the efficiency of our schemes. 
One of our future plans is to further employ autonomic 
computing principles in the direction of realizing cognitive, 
wireless access, infrastructures. Our goal is to develop an 
autonomic manager, which will encompass the DCLR scheme. 
The manager will consist of policies, context perception 
capabilities, reasoning algorithms, learning functionality and 
knowledge engineering, technologies for the representation of 
ontologies and semantics. Another issue for future study is to 
complement the distributed DCLR scheme with a second tier 
of, more centralized, management functionality, invoked when 
the distributed components cannot converge to acceptable 
solutions. The synergy of the two tiers will guarantee that 
whenever the distributed components diverge from the near-
optimal performance levels, the application of the 2nd tier will 
restore the performance to the desired levels.  
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