Transient and persistent RDF views over relational
databases in the context of digital repositories

Nikolaos Konstantinoly Dimitrios-Emmanuel SpanyNikolas Mitroif

!Hellenic Academic Libraries Link
Iroon Polytechniou 9, Zografou, 15780, Athens, Gece
23chool of Electrical and Computer Engineering, bzl Technical University of Athens
Iroon Polytechniou 9, Zografou, 15780, Athens, Geece
nkons@cn.ntua.gdspanos@cn.ntua,gnitrou@cs.ntua.gr

Abstract. As far as digital repositories are concerned, nmoog benefits
emerge from the disposal of their contents as ldn®pen Data (LOD). This
leads more and more repositories towards this tilirec However, several
factors need to be taken into account in doingasmong which is whether the
transition needs to be materialized in real-time irasynchronous time
intervals. In this paper we provide the problemreavork in the context of
digital repositories, we discuss the benefits areivbacks of both approaches
and draw our conclusions after evaluating a sgtesformance measurements.
Overall, we argue that in contexts with infrequdata updates, as is the case
with digital repositories, persistent RDF views arere efficient than real-time
SPARQL-to-SQL rewriting systems in terms of querysp@nse times,
especially when expensive SQL queries are involved.

Keywords: Linked Open Data, RDF Views, Bibliographic informatjdigital
Repositories, R2ZRML, Mapping.

1 Introduction

The Linked Open Data (LOD) movement is constandiyimng worldwide acceptance,
emerging as one of the most prominent initiativeshe Web 3.0 era. As it can be
observed, in many aspects of public informatiorshdt toward openness is taking
place. The value of exposing data as LOD is be@ggnized in the cultural heritage
domain Europeana.euclarosnet.orjy governance data.gov.uk even in the news
world (quardian.co.uk/daja

The technological building blocks that contributethis shift have reached to a
maturity level, able to sustain production envirems available to public access.
This is made available using technologies such B8R4 XML, RDF and SPARQL,
all internationally accepted W3C standards. Havitftese as technological
background, the LOD vision is largely being matized, slowly but steadily, by
bringing existing data into the Semantic Web.

As to what drives the changes towards this directive can observe numerous
benefits, both for the publishers, as well as liertarget audience, or consumers:

» Ease ofsynthesiswith external data sources, in the form of inteigratbeyond
OAI-PMH), fusion, and mashups. The end user (oreltger) can perform
searches and retrieve results spanning variousitepies, from a single SPARQL
endpoint. Also, it is made possible to downloadgar the whole data in order to
combine it with other data and process it accorttnigis/her needs.

» Semanticenrichment Term and definition ambiguity is eliminated, aliog data
to be uniquely understood and consumed both by heraa well as by software
agents.

» Inference It is possible to infer implicit facts based oxpkcitly stated ones.
These new facts can then be added to the graph, @abhgmenting the initial
knowledge base.

» Reusability Third party applications can be built on top lvé datasets, as the data
can be reused in third-party systems. This can &tenmlized, either by including
the information in their datasets, or by real-tigjueerying the published resources.

» Intelligencein the queries. Taking into advantage ontologydrighy and concept
interrelations, results can be obtained that extkedkeyword capabilities. In the
same manner, Google uses the Freebase ontologyder to return intelligent
results which are more related to the users’ qaerie

» Digital repositorycontent can be linkecand made part of the broader context of
the Web. Instead of being an isolated datasettiagya special group of people,
library data can better fulfill their purpose byitg part of the information users
can discover and reuse on the Web.

* Richerexpressiveness describing and querying available informati®woth the
terminology that can be used to describe the datasevell as the queries that can
be posed against it, with the use of semantic vesihrtologies can be more
complex and more expressive, allowing for a rickegrof capabilities.

In order to offer solutions towards creating LODBe tmethodological approaches
that enable it can largely be regarded as fallinp ione of the following two
approaches: in the first approactransient” RDF views are offered on top of the
data, in the sense that the RDF graph is not naditeadl; instead, queries on the RDF
graph are answered with data originating from ttiea dataset, in a manner similar
to the concept of SQL views. The second approaablies“persistent” RDF views,
meaning that the data is exported (or dumped, iasoften called) asynchronously in
RDF graphs. In thépersistent” approach, the idea is similar to the materializiegv:
data is exported in an RDF graph leaving the souncdtered.

It is interesting to mention, since adopting R¥Faadataset format to work upon
entails so many benefits, a valid question wouldvid®y not redesign new systems to
operate fully using RDF graphs as their data batRdfirst of all, technologies such
as relational databases have matured in the Iyessts far more than semantic
technologies, offering a richer capability set. tharmore, current established
practices utilize technologies that have been sisfully tested through time and have
proven effective in preserving digital informatioand assuring its unaltered
endurance in time. Therefore, such mature and bleligechnologies cannot be

1 Freebase API: https://developers.google.com/fre@ba

abolished without at least allowing for a periodtwfie to run both technologies
alongside. This would allow for any problems toameentuated and be solved before
jumping to new technologies. In the case of LODegation, potential risks are more
associated with lack of expertise by the persotirat needs to be trained in order to
adopt and operate the new technologies, and Issgiated with the maturity of the
related technologies themselves.

Next, we discuss about available approaches regartiow to operate an
institutional repository, whose operation typicaihyvolves a number of persons, an
established methodology, and an infrastructure ithaptimized towards serving its
goals. With this in mind, instead of fully migragiio newer technologies, we rather
suggest operating them side-by-side, as an additioontent distributing channel,
over the same source dataset, comprising digipalsitory contents.

All the above lead to the conclusion that in orterexpose digital repository
contents as LOD, several policy-related choicesehtty be made, since several
alternative approaches exist in the literaturehaut any one-size-fits-all approach
[1]. One of the most important factors to be coesd is discussed in this paper:
Should RDF provisions take place in real-time ansti database contents be dumped
into RDF at time intervals? Or, as explained befsfeuld the RDF view over the
contents beransientor persister?

Both approaches constitute viable approaches, w#llits specific characteristics,
benefits and drawbacks. However, each case reggpexsfic handling, in the sense
that there are no one-solution-fits-all approacteghis paper we analyze the pros
and cons of each method as far as the institutidigital repository domain is
concerned, taking into account the particulariti#gs presents. Performance
measurements are conducted concerning the expemicigiuerying times in variable
initial datasets and settings, and respective nmeasnts are presented and discussed.

The paper is structured as follows. Section 2 dears related approaches that can
be found in the bibliography. Section 3 presents #émvironment in which the
measurements took place, the results, and an if-@egalysis and discussion. Section
4 concludes the paper with our most important asichs and directions future work
could take.

2 Related Work

The problem of generating RDF content from existidgta sources has been
investigated extensively and has gradually becommenamon task for data providers
who wish to make their data available as RDF arap rthe associated benefits
discussed in Section 1. The data sources thatvedgromay have at her disposal will
normally range from unstructured, free-text docutmerto semi-structured
spreadsheets and structured databases.

The latter ones represent one of the most popalaces of data, with widespread
adoption and a mature theoretical and practicakdranind. Likewise, the problem of
mapping relational database contents to an RDFhghag attracted a fair amount of
attention and several solutions for carrying oig thsk are available. Such solutions

and tools — often coined by the term RDB2RDF teofgesent considerable variance
and can be classified to distinct categories, afingrto a number of criteria [2]. One
such criterion is the access paradigm of the gée@fDF graph, according to which
RDB2RDF methods can be classifiedn@assive dum@and query-drivenones. The
former ones, also known as batch transformatioixract-Transform-Load (ETL)
approaches, generate a new RDF graph from a meddtiatabase instance (e.g. [3,
4]) and store it in physical form in some extersgdrage medium. This external
medium is often a database especially customizethéomanagement and retrieval of
RDF data, which is referred to adrigple store The RDF graph generated by such
approaches is said to bmaterialized Triple stores do not provide any means to
transform, or maintain any kind of mappings betwtenrelational database contents
and the resulting triples, leaving the synchromiramethodology up to the user. On
the contrary, query-driven approaches provide act®an RDF graph that is implied
and does not exist in physical form. In this cdse,RDF graph igirtual and is only
considered when some appropriate request is madallyin the shape of a semantic
query.

This distinction of tools and approaches can aks@ibwed under the prism of the
data synchronizationcriterion, according to which methods are distisbad
depending on whether the generated RDF graph alvedlests the current database
contents or not. Transient views, as they have beéned in Section 1, have no need
of a synchronization scheme, since the accordammng the RDF graph and the
underlying database is always guaranteed. Anotheardage of transient views stems
from the fact that they do not need any additiostarage for the RDF graph
produced, given that the latterimsplied and not materialized at all.

These two advantages highlight the superiorityrafgient views over persistent
ones. It comes as no surprise that a lot of rebeaffort focused, over the previous
years, in efficient algorithms that translate SPARgueries over the RDF graph in
semantically equivalent SQL ones that are execotest the underlying relational
database instance [5, 6]. Although, on first thdudhe online query translation
approach might seem inefficient, some evaluatiopegrents, such as the ones in
[7], in fact show that some SPARQL-to-SQL rewritieggines (e.g. D2RQ [8] or
Virtuoso RDF Views [9, 10]) outperform triple stsrén the query answering task,
achieving lower responses. This is due to the ritgtand optimizations strategies of
relational database systems that already outperfiophe stores by factors up to one
hundred [7]. Therefore, as long as the SPARQL-td-8@nslation does not introduce
a large delay, the transient view access paradighst¥ outperform triple stores.
Still however, this is not an undisputed claim,otiser works have shown that such
rewriting engines perform more poorly than tripieres [11].

We investigate the performance of both persistadtteansient views in a digital
repository context and argue that in contexts withequent data updates, a static
approach might be more suitable than a dynamicitiegfRDB2RDF system.

3 Evaluation

This section analyzes the performance evaluatigrerxents that were conducted.
The experimental setup is described, as well alteined results and conclusions
that can be drawn.

3.1 Experiments Setup

In order to measure the performance of the propappdoach, three separate DSpace
installations were created. Using a random generdteese installations were
populated with 1k, 10k, and 100k items, respecfiv€he metadata that was assigned
originates from the Dublin Core (DC) vocabulary, @sed in “vanilla” DSpace
installations. Each randomly generated item wast@eatontain between 5 and 30
metadata fields, with random text values rangingmfr2 to 50 text characters.
Moreover, a number of users were inserted to edthese repositories, populating
them with 1k, 10k, and 100k users respectivelyaAesult, we had three repositories,
one with 1k items and 1k users, 10k items and Heks) 100k items and 100k users.

Technically, DSpace 3.1 was used, backed by a R&Q- 9.2 RDBMS, on a
Windows 7, 64-bit machine, running on a 2.10GHell@ore Duo, with 4 GB RAM.

In the same infrastructure, both the D2RQ expertaldR2RML version 4 (available
online atdownload.d2rq.organd the OpenLink Virtuoso server, open-sourceigar
6.16, x64 were installed and configured.

In the transient view case, queries were perforodg D2RQ and an R2RML
[12] mapping file over the DSpace database. Irp#msistent view case, queries were
performed after exporting the DSpace database d&Di#n graph, using D2RQ and
R2RML Parser (a tool that was introduced in [3]ihwihe same R2RML mapping
file, and subsequently loading the RDF dump inMilveuoso instance.

While the Virtuoso Universal Server supports R2RNKhappings, the feature of
viewing an external database as an RDF graph igabla only in its commercial
release, which was not available at the time ofiélsés. Therefore, it was not possible
to test Virtuoso’'s R2RML views over the PostgreSREpace schema. Instead, in
order to measure Virtuoso's transient view perfatoe|e we had to dump the
PostgreSQL database contents and load them intoogi.

It is interesting to note that, in order to creat®d populate the experimental
repositories with dummy data, bulk SQL insertioreeded to be performed in the
database. This is an operation that requires aausimce, unless care is taken, the
required time could be unacceptable. Technicaliis involved removing database
table indexes and re-creating them at the endeoifertions.

Regarding Virtuoso, we noted that in order to execaomplex queries on
Virtuoso, using R2RML-based transient views, theogpam memory used
(MaxMemPoolSize variable) had to be increased from 400M (defaulue)rto
800M. We also noted that database caching, for sbpreasurements, influences
greatly the results while in other cases it seemnadt have any impact at all. For

instance, the SPARQL query Q2c (see Appendix IIgoaph 1c using D2RQ, took
0.89 seconds, while subsequent calls took 0.3%, @3d 0.36 seconds, respectively.
However, the time that was required to dump damltasitents into graph 2s using
D2RQ, seems to be slightly, if at all, affecteddaching, as it took 96.79s, 95.17s,
96.47s, and 93.89s, at consecutive executions.itherecase, in this paper the
measurements contain the average of several measuoi® without counting the first
one.

Table 1 below gathers the results regarding the tihat was needed to export
database contents as RDF graphs in (a) simplegnahgre complex mappings that
will next be analyzed.

Table 1.Time taken to export database contents as RDF @sa#qa) simple mappings on the
DSpaceeperson table, and (b) more complex mappings containingyni#DIN statements
among many tables.

Users triples D2RQ Ezrzglrl_ ltems triples D2RQ Egzgﬂ:‘
1k 3,004 14.52 3.30 1k 16,482 3.15 0.914
10k 30,004 95.58 6.79 10k 159,840 28.96 7.732
100k 300,004 906.26 25.06 100k 1,592,790 290.92 .4420

(a) (b)

The first conclusion that can be read off theseedrpental measurements is the
fact that dumping the contents of the DSpace datab@m an RDF graph takes much
longer using D2RQ than using R2RML Parser. Theeefarhen real-time access to
the data is required, D2RQ is preferred, but iresashen dumps at time intervals
suffice, the R2RML Parser tool is preferred. Of gy dumping the data into RDF,
requires some time afterwards in order to loadgtamhs into Virtuoso, but as it is
shown next, it is a small sacrifice consideringgpeed that it gives to queries.

3.2 Results regarding simple mappings

In order to measure behavior in simple settings,ntlapping definition that was used
targeted only the users that are stored in the BSpastallation (tablesperson |,
epersongroup , and epersongroup2eperson , the last one holding
information about the many-to-many relationshipsoagipersons and groups). An
excerpt of the mapping file is presented in Appendi
Table 1(a) shows the time it took to export theultssinto an RDF graph. After
exporting the RDF graphs, three test cases weradened:
a. Transient views, using D2RQ over PostgreSQL, anB2RML mapping
b. Persistent RDF views, using Virtuoso, over an RRifmp of the database
according to the R2ZRML mapping
c. Transient views, using Virtuoso over its relatiodatabase backend, and an
R2RML mapping.

In caseb, the RDF graphs were loaded in the Virtuoso ircgaihe required time
was 0.53 2.16 and 19.12 seconds, respectively. In order to measure SPARQL
performance, the queries presented in Appendixetevdevised.

Table 2 below sums up the measurement resultst éani be observed from the
guery response times, in caseandc, the most demanding query was Q2s, taking
more than 1h to compute over graph 3s (contain@@k lisers). This behavior is due
to the numerous (6) triple patterns in the grapttepa Query Q1s also appeared to be
demanding, taking 398.74 seconds to compute owgrhg8s. However, none of these
delays was observed in casdpersistent RDF view), in which the most demanding
query was Q1s, taking 2.31 seconds to computegregh 3s.

Table 2.Query response times, in seconds, in simple mapg@ttmgs.

Graph 1s Graph 2s Graph 3s

Qls | 6.18 0.1 0.56 44.75 0.31 0.88 398.74 231 3.8
Q2s | 11.48 0.07 2310 11.76 0.08 3522 1191 0.12 4358
Q3s | 3.18 0.04 0.22 11.44 0.04 0.6§ 57.08 0.04 1.28
a b c a b c a b c

3.3 Results regarding complex mappings

The second set of measurements was performed lasvsol After populating the
DSpace repositories with 1k, 10k, and 100k iteraspectively, a mapping file was
created, aiming at offering a view over the metadatlues in the repository. This
mapping file tends to become very complex sincehemapping declaration can
comprise results from 5 joined tables, a fact tfeatlue to the highly normalized
DSpace schema. Appendix | shows an excerpt of thpping file, specifically the
part that targets at thke.contributor.advisor values.

Table 1(b) holds the time in seconds that was reduto export the database
contents as an RDF graph, using D2RQ, and R2ZRMkdPaover the same mapping
file and relational database backend.

Subsequently, the resulting graphs were inserte@ iirtuoso instance. This
process tool.87 11.04 and201.03seconds, respectively. Next, the three SPARQL
queries that are presented in Appendix Il were sklji in order to measure
performance. Table 3 below concentrates the measunteresults.

Table 3. Query response times, in seconds, in complex mappi

Graph 1c Graph 2c Graph 3c
Qlc | 125.34 0.27 1100.58 1.77 13921.64 11.18
Q2c | 0.34 0.048 0.35 0.05 1.04 0.05
Q3c | 144.01 0.13 1338.84 2.19 >6h 10.19
D2RQ Virtuoso D2RQ Virtuos D2RQ Virtuoso

It must be noted that these queries in this expartmvere evaluated in real-time
against the D2RQ installation (transient views)d against the RDF graph dumps
that were inserted in the Virtuoso instance (ptasi3. Although Virtuoso supports
R2RML, it was not possible in this case to evaluhte queries against its R2RML
implementation since it does not yet support th&RR rr:sqlQuery construct
that allows for arbitrary SQL queries to be posegdlist the database.

Overall, in the results table we can observe ti8t Was the most resource-hungry.
Taking more than 20 minutes to compute over graphit2was left overnight to
compute over graph 3c, and was stopped since th@at of time was considered
unacceptable, considering that the same query theesame graph in the persistent
RDF view approach took 10.19 seconds to computernfQ@2c was the fastest to
compute at all times since it was not supposecttiorm any results. Query Qlc was
more interesting since its graph pattern containi@g triple patterns took
approximately 3.87 hours for D2RQ to compute orpgrac (containing 100k items),
and 11.18 seconds for Virtuoso.

3.4 Discussion

Among the most important evaluation results are dhes visualized in Figure 1
below. From Figure 1(a), we can deduce that forriggeQls and Q3s, query
execution times increase as the size of the undgrigraph increases, while query
Q2s execution time remains more or less the samoe & does not return any results.
In Figure 1(b), in order to be objective in the w@&ments regarding Virtuoso
performance, we added to the Qlc response timgntiecthat was needed in order to
dump into RDF the relational database contentspgus2RML Parser, and to
subsequently load the RDF dump into Virtuoso. Alsthis case, the execution time
increases as the graph size increases, a faaliwaholds for dumping the RDF using
R2RML Parser, loading the dump into Virtuoso, angery Q1lc answering over
graphs 1c, 2c, and 3c in Virtuoso.

1000 _
% s EQls % 10000 | mQlc at D2RQ
Q Q
% 10 |50 2 1000 |ODump—Load—Qle
£ Q3s E at Virtuoso
= -g 100 r
S 10)
S 2 10t
3 3
2 21
graph 1Is graph2s graph 3s graph 1c graph2c¢ graph 3¢
(@) (b)

Fig. 1.In 1(a), we depict a query response time visuatimain the simple mapping case
while in 1(b) we visualize query Q1c execution timer D2RQ (transient RDF view) and over
Virtuoso (persistent RDF view, after dumping theatbasse contents using R2RML Parser, and
loading the RDF dump into Virtuoso) in the compleapping setting.

Overall, as it can be deduced from the experimettames, in the case of digital
repositories, real-time SPARQL-to-SQL conversions aot the optimal approach,
despite the presence of database indexes that woegdmably increase performance
compared to plain RDF graphs. The round-trips #® database pose a burden that
cannot be alleviated by relational database indgtéchniques. RDF dumps perform
much faster, especially in the cases of SPARQL igsethat involve many triple
patterns that are subsequently translated to nued®@IN statements, which are
usually expensive. Therefore, despite the advastag@sient views demonstrate in
the general case, in the case of digital repossothe additional computational
burden they impose causes persistent views to lbe preferable.

Regarding the initial time, required to export tetabase in an RDF graph, the
R2RML parser concluded its export in much less titren D2RQ. Of course, this
required the extra step of loading the RDF dump Mirtuoso, as illustrated and
explained in Figure 1(b).

Overall, using Virtuoso with R2RML views enablecses to be performing well;
this solution however, comes at the expense ofdif@ving: R2RML transient views
are only offered over Virtuoso’s relational databdsackend, in the open-source
version. Connection to external data sources islabla only in the commercial
Virtuoso edition. Moreover, no arbitrary SQL queri@e supported as logical tables
in the R2ZRML mapping file, thus diminishing mappipgtential and capabilities.

4 Conclusions and Future Work

In this paper we present and evaluate an approachexposing digital library
information as LOD. After introducing the problerafhework and examining several
of the approaches that exist in the literature pedorm a set of measurements over
two distinct approaches, and evaluate the measutar@sults. The first case concerns
on-the-fly, transient RDF views over the relatiodatabase contents while the other
case concerns querying asynchronous exportsgirsisgent RDF dumps.

As it can be generally concluded from the measuntémejuerying RDF dumps
instead of performing real-time round trips to ttiatabase is in general a more
efficient approach. The answer was not clear bbfond, since, as one would expect.
SPARQL-to-SQL translators can take into accountexaed and database
optimizations, but on the other hand, this transfain real-time is costly in terms of
computational burden.

Simple as it may seem, on-the-fly SPARQL-to-SQL rguganslations is not a
solution that will suit all environments and is fustified for every occasion. It would
be advisable to prefer real-time query answeringr ¢kansient RDF views when the
data is subject to frequent changes, and lessdreqqueries (for example, such as in
social networks). Cases such as institutional riggies and bibliographic archives in
general are not typically updated to a significamount daily, and selection queries
over their contents are far more frequent tharutidates.

The cost of not having real-time results may notakecritical, considering that
RDF updates could take place in a manner similam&ntaining search indexes,

typically used to enable full-text search in welplagations. The trade-off in data
freshness is largely remedied by the improvemettiémquery answering mechanism.

Also noteworthy is the fact that still, exportingtd as RDF covers half of the
requirements that have to be met before publisteépgsitory data: the second half of
the problem concerns its bibliographic dimensiond&¥pread ontologies have to be
used where applicable in order to offer meaningfsémantically enriched
descriptions of the DSpace repository data. Morgdirgking the data to third party
datasets is an aspect that is not hereby discuasétis out of the scope of the paper.
Overall, this paper’s contribution is a methodoldhgt offers an insight in the initial
problems associated with the effort required tolighbdigital repository data as
(Linked) Open Data, and the results one could expec

Future steps that could be followed in order to aexp this work include
considering more mapping tools supporting R2RML cfsuas Ultrawrap
(capsenta.cod, in order to evaluate dump times and query tireklitionally, more
institutional repository solutions (such as Epri(@prints.org) or triple stores (such
as Sesamafpenrdf.org) could be considered for inclusion in the measumats.

Acknowledgements.This work was partially funded by the Hellenic Aemic E-
Books projectfttp://www.kallipos.gy.

References

1. Villazon-Terrazas, B., Vila-Suero, D., Garijo,, Wilches-Blazquez, L.M., Poveda-Villalon,
M., Mora, J., Corcho, O., Gomez-Perez, A: Publishiintkked Data - There is no One-Size-
Fits-All Formula. Proceedings of the European Dadeum (2012)

2. Spanos, D.-E., Stavrou, P., Mitrou, N.: Bringnetptional databases into the semantic web:
A survey. Semantic Web Journal, Vol. 3, No. 2 (201&9-209

3. Konstantinou, N., Spanos, D.-E., Houssos, Ntrddj N.: Exposing Scholarly Information
as Linked Open Data: RDFizing DSpace contents. Teetfenic Library (2013), in press

4. Auer, S, Dietzold, S., Lehmann, J., Hellmann,Aimueller, D.: Triplify — Light-Weight
Linked Data Publication from Relational Databag&ceedings of the 18th international
conference on World Wide Web (WWW '09), New Yorky ,NUSA (2009) 621-630

5. Chebotko, A., Lu, S., and Fotouhi, F.: Semarfiesserving SPARQL-to-SQL Translation.
Data & Knowledge Engineering, Vol. 68, No. 10 (2p993—-1000

6. Cyganiak, R.: A Relational Algebra for SPARQL, Teicial Report HPL 2005-170 (2005)

7. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmankernational Journal On Semantic
Web and Information Systems, Vol. 5, No. 2 (200924

8. Bizer, C., Cyganiak, R.: D2R Server - Publishing Rat@ Databases on the Semantic
Web. Proceedings of the 5th International Semaiéb Conference (2006)

9. Erling, O., Mikhailov, I.: RDF support in the Yiioso DBMS. Proceedings of the 1st
Conference on Social Semantic Web, Leipzig, Gern{a@97) 59—-68

10.Blakeley, C.: Virtuoso RDF Views Getting Starteduid®. Available online at
http://www.openlinksw.co.uk/virtuoso/Whitepaperd/ptirtuoso_SQL_to_RDF_Mapping.p
df (2007) accessed July 2nd 2013

11.Gray, A. J. G., Gray, N., and Ounis, |.. Can RDBERDpols Feasibly Expose Large
Science Archives for Data Integration?. Proceedioigthe 6th European Semantic Web
Conference (ESWC 2009), The Semantic Web: ResearchApplications, LNCS Vol.
5554, Springer (2009) 491-505

12.Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RMdpping Language. W3C
Recommendation. Available online at http://www.wg/diR/r2rml/ (2012) accessed August
29th 2013

Appendix | — Mapping file excerpts

Next, we provide the most important excerpts fréva R2RML mapping files used
during the experiments. In the simple mapping cémedeclarations are as follows:

map:persons-groups

rr:logicalTable [rr:tableName "epersongroup2ep erson™; J;
rr:subjectMap [rr:itemplate
'http://data.example.org/repository/group/{"eperson _group_id"};

I3
rr:predicateObjectMap [

rr:predicate foaf:member;
rr:objectMap [rr:template
'http://data.example.org/repository/person/{"eperso n_id"};
rritermType rrIRI;] 1.

In the complex mapping case, the SQL queries gatncomplicated, as in the
excerpt that follows:

map:dc-contributor-advisor

rr:logicalTable <#dc-contributor-advisor-view>;

rr:subjectMap [rritemplate
‘http://data.example.org/repository/item/{"handle"} "

I
rr:predicateObjectMap [

rr:predicate dc:contributor;

rr:objectMap [rr:column "text_value™];]-

<#dc-contributor-advisor-view>

rr:sqlQuery "

SELECT h.handle AS handle, mv.text_value AS tex t_value

FROM handle AS h, item AS i, metadatavalue AS m v,
metadataschemaregistry AS msr, metadatafieldregistr y AS mfr
WHERE

i.in_archive=TRUE AND

h.resource_id=i.item_id AND

h.resource_type_id=2 AND

msr.metadata_schema_id=mfr.metadata_schema_id A ND

mfr.metadata_field_id=mv.metadata_field_id AND

mv.text_value is not null AND

i.item_id=mv.item_id AND

msr.namespace="http://dublincore.org/documents/ dcmi-terms/'
AND

mfr.element="contributor' AND

mfr.qualifier="advisor'

Appendix Il — SPARQL queries

Appendix Il concentrates the SPARQL queries tharewexecuted against the
mapping results, in order to conduct the measuréy@asented in Tables 1, 2 and 3.

Table 4. On the left, we provide the SPARQL queries Q1s,,@2d Q3s that were executed
against simple mappings, and on the right the SPABR@ries Qlc, Q2c, and Q3c that were
executed against more complex mappings.

Qils Qlc

SELECT DISTINCT ?eperson ?name SELECT DISTINCT ?item ?title
WHERE { ?creator

?eperson rdf:type WHERE {

foaf:Person. ?item dcterms:title ?title.
?eperson foaf:name ?name. ?item dcterms:creator ?creator.
FILTER (?name != "mlo vglbcbk" ?item dcterms:identifier ?id .

)} ?item dcterms:type ?type.
ORDER BY ?eperson ?item dcterms:subject ?subj.
LIMIT 500 ?item dcterms:date ?date.

FILTER (?date != "2008-06-
20T00:00:00")}
ORDER BY ?creator

LIMIT 100
Q2s Q2c
SELECT DISTINCT ?epersonl SELECT DISTINCT ?item1 ?item2
?groupnamel ?eperson2 ?creatorl ?typel ?type2
?groupname2 WHERE {
WHERE { ?item1 dcterms:title "example”.
?epersonl rdf:type ?item1 dcterms:creator ?creatorl.
foaf:Person. ?item1 dcterms:identifier ?id1.
?eperson2 rdf:type ?item2 dcterms:title "example".
foaf:Person. ?item2 dcterms:creator ?creatorl.
?groupl foaf:member ?epersonl. ?item2 dcterms:identifier ?id2.
?group2 foaf:member ?eperson2. OPTIONAL{
?groupl rdf:type foaf:Group. ?item1 dcterms:type ?typel.
?group? rdf:type foaf:Group. ?item2 dcterms:type ?type2. } }
OPTIONAL { ORDER BY ?creatorl
?groupl foaf:name ?groupnamel. LIMIT 100
?group?2 foaf:name ?groupname2.
} } LIMIT 500
Q3s Q3c
SELECT DISTINCT ?eperson SELECT DISTINCT ?item ?title
WHERE { ?creator
?group foaf:member ?eperson. WHERE {
?group foaf:name ?item dcterms:title ?title.
"Administrator". ?item dcterms:creator ?creator.
?eperson foaf:name "john ?item dcterms:identifier ?id
smith" OPTIONAL{ ?item dcterms:type ?type }
} ORDER BY ?eperson OPTIONAL{ ?item dcterms:subject

?subj }

OPTIONAL{ ?item dcterms:date ?date.
FILTER (?date > "2008-06-
20T00:00:00"M<http://www.w3.0rg/200
1/XMLSchema#dateTime>) } } ORDER BY
?creator

