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Abstract This paper investigates the problem of the real-time integration and process-

ing of multimedia metadata collected by a distributed sensor network. The discussed

practical problem is the efficiency of the technologies used in creating a Knowledge

Base in real-time. Specifically, an approach is proposed for the real-time, rule-based

semantic enrichment of lower level context features with higher-level semantics. The

distinguishing characteristic is the provision of an intelligent middleware-based archi-

tecture on which low level components such as sensors, feature extraction algorithms,

data sources, and high level components such as application-specific ontologies can be

plugged. Throughout the paper, Priamos, a middleware architecture based on Seman-

tic Web technologies is presented, together with a stress-test of the system’s operation

under two test case scenarios: A smart security surveillance application and a smart

meeting room application. Performance measurements are conducted and correspond-

ing results are exposed.

Keywords Semantic · Middleware · Rule-based · Real-time · Context-aware ·
Annotation.

1 Introduction

Currently existing multimedia data, either publicly available or in restricted access

areas, should be annotated in order to become easily and meaningfully retrievable. This

purpose is served by a number of prevalent Semantic Web technologies like content

description languages, query and rule languages, and annotation frameworks. These

technologies provide the common framework for human and machine consumption of

data. Specifically, Semantic annotation in the form of metadata can be added to any

form of context, in order to add well-defined semantics that will enrich the context

information and boost its (re)usability.
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Despite ongoing research efforts on advanced content-based annotation and re-

trieval techniques in A/V repositories, keyword-based annotation approaches still pre-

vail in content description and thus, content retrieval. Hugely popular online services

employ it such as flickr.com for pictures, del.icio.us for user bookmarks, youtube.com

for video and last.fm for audio content. In any case, annotation is typically kept sepa-

rately from the data, in the form of metadata, an approach that is compliant with the

Semantic Web model.

Given the importance of Semantic annotation, one could wonder why its presence

is not always guaranteed. The answer is a combination of several factors. Firstly, it

is a time-consuming task. Users lack time or do not consider it important enough to

spend time annotating already published content. The service providers on the other

hand mostly believe that annotation is a loss of resources in terms of time and money.

Moreover, it is an error-prone task that requires expertise in order to be conducted

properly. Also, the reuse of this information is troublesome as annotation is usually

likely to be redundant, partial or stored in different formats [1]. If we take also in

consideration that annotation easily becomes outdated then we can easily state that

without automation, the future of the Semantic Web still has to face many challenges

[2].

The automation of the whole annotation procedure is a required step further to-

wards its wider deployment. Especially in context-aware applications which typically

involve large volumes of multimedia data and its metadata, the need of real-time au-

tomatisation of the annotation procedure is indisputable. User friendly configuration

of the annotation system based on different application needs is another important

dimension that needs to be addressed.

On the other hand, even annotated content is not directly exploitable by users as

the development of inference-based applications for content delivery to different user

categories is still a painstaking process. This is more obvious in cases where large

bulks of real-time A/V and contextual data are produced from several data sources

(e.g. sensors) and need to be processed both real-time and offline. For example, an

advanced security surveillance system should be able to cope at a Semantic level with

all the following:

– Reliable real-time alerts produced in emergency situations decided during system

operation (e.g. an unknown person is entering a restricted area without being ac-

companied by an identifiable person),

– Dynamic system configuration and adjustment both to the environmental condi-

tions in time and space (e.g. dynamic sensor activation/deactivation, camera selec-

tion depending on the point of interest), and to the underlying network conditions

and user devices (e.g. selection of the quality level of an information flow based on

its Semantic content),

– Acceleration of offline searching of important facts (e.g. identification and move-

ment tracking of a suspect person entering a restricted area in a time zone of high

risk, identification of an object left for more time than allowed in a restricted area).

What we present in this paper is Priamos, an open, rule-based middleware system

for real-time Semantic enrichment of context features, which enables the development

of inference based applications, as it is implemented using Semantic Web technologies.

The distinguishing characteristic of the Priamos architecture is that both low level

components, such as sensors, feature extraction algorithms and data sources, and high

level components, such as application-specific ontologies and rule sets are pluggable
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to the middleware architecture, while high-level interfaces are exposed for prototyping

and development of innovative applications that require inference. Furthermore, we

demonstrate how the logic of an application can be modeled on top of the middleware

components in order to launch a context-aware system that will provide real time

higher-level Semantics and create a Knowledge Base (KB) where the system’s awareness

of the world will be nested for offline searching.

The paper is structured as follows: Section 2 presents the motivation behind the

current work, the state of the art in the field of content annotation and context-aware

inference-based applications and a comparison our approach with the related work.

Section 3 analyzes the overall architecture and the software implementation. Section

4 demonstrates two test cases of the system, operating under an advanced security-

surveillance application scenario and a smart meeting room scenario in a laboratory

environment, while a performance evaluation is presented in Section 5. Finally, Section

6 concludes the paper by noticing the future directions for expanding the presented

work.

2 Motivation and Related Work

Firstly, we should explain why the use of MPEG-7 or other similar approaches would

not suffice and what does the architecture here offer in addition. The need of a higher-

level capturing of the semantics of a multimedia document has led to the establishment

of the MPEG-7 standard but, unfortunately, the standard was not designed with the

Semantic Web community in mind [3], a fact that is obvious since the description

language is in XML. Therefore, for the needs of the hereby presented work, the MPEG-

7 standard is not sufficient. The necessity of homogenizing distributed video streams on

a higher level led us to adopt a purely semantics-based approach. As shown in Section

3, the approach presented here can describe events captured from multimedia sources

in as high level as the scenario demands. The adoption of MPEG-7 would restrain the

system’s knowledge to the standard’s relatively poor semantic boundaries.

Semantic Web-compliant standards have been proposed such as the OWL-based

VERL and VEML [4]. These standards are employed in order to annotate and record

objects and (sub)events in video streams. The restrictive characteristic of this work

in comparison with the hereby presented work is the use with video information. Our

approach defines a more generic approach that can handle incoming flows of other types

of information; not only video. In Section 3.2, we will discuss about how the proposed

approach offers the option of employing standards such as VERL, or Adobe’s open,

standards-based XMP1 or any Semantic Web vocabulary or microformat in order to

satisfy applications’ needs in describing their context.

We continue by providing the definition of real-time and context-aware notions that

are the key concepts of the Priamos approach.

2.1 Real-Time Processing

According to [5], all systems can intuitively be made to look as if they were real-time

simply by defining arbitrary deadlines to conform to. But, the behaviour of an actual

1 Extensible Metadata Platform (XMP): http://www.adobe.com/products/xmp/
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real-time system is defined in terms of the system’s tolerance to missed deadlines. A

real-time system is one that must satisfy explicit bounded response time constraints to

avoid failure and present consistency regarding the results and the process time needed

to produce them. This distinguishing feature of the real-time systems is called timeli-

ness. The time that elapses between the presentation of the input and the presentation

of the output is called response time or latency.

The fundamental difference between a real-time and a non real-time system is

the emphasis in predicting the response time and the effort in reducing it. Actually,

there is a misconception that the real-time systems should respond in fast times (i.e.

microseconds). But the deadlines of a real-time system in fact are depending on the

underlying processes being controlled.

In general, real-time systems are divided into three kinds. In hard real-time systems,

failure to meet even one deadline results in total system failure. In firm real-time

systems, a small number of deadlines can be missed without total system failure. Third,

in soft real-time systems missed deadlines cause degradation of performance; not failure.

In this paper, the approach presented constitutes a hard real-time system, in the

sense that the deadlines are respected and system failure is avoided. As demonstrated

in the conducted measurements in Section 5, when the system’s response rises above

certain thresholds, maintenance procedures take place in order to assure timeliness.

2.2 Context information

As denoted in the title, the presented middleware can offer the basis for context-aware

applications. Therefore, it should be clarified what does the existence of context entail:

Context means situational information. According to [6], context is “...any information

that can be used to characterize the situation of an entity”. An entity can be a person,

a place or an object that is considered relevant to the interaction between a user and an

application. The user and the application are considered as entities as well. A system

is context-aware if it can extract, interpret and use context information and adapt its

functionality to the current context of use.

Throughout this paper, we will use the words context information or multimedia

content indistinctly because they both refer to the medium through which the system

gains awareness of its surrounding world. In the work presented here, the multimedia

streams actually are the primitive form of the information that flows towards the

middleware comprising its context.

Sensors and appropriate software are required to capture context information. A

common representation format should be followed, in order to transfer the contextual

information to applications and in order for different applications to be able to use the

same information basis. Thus, in order to ensure syntactic and semantic interoperabil-

ity, one solution would be a Semantic-Web-compliant approach regarding annotation

that enables the aggregation of various heterogeneous data sources.

Nevertheless, content annotation does not constitute a single panacea for content

retrieval and direct utilization by applications. The reason is that no single approach

exists as far as homogenizing bulks of data is concerned with. Standards such as MPEG-

7 offer the means to annotate multimedia data, however, it remains as a question how

accurate the metadata are, how convenient is it to maintain in accurate state and,

mostly important, what the true added value to the content is. In other words it is not

clear how can the user benefit from the existence of such metadata. In order to provide
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a viable annotation mechanism, there is need for the quickest automated annotation

that can offer the highest possible level of intelligence. Ease of development leads to

lower costs and faster times in application development and system maintenance.

Let us consider as an example the cameras that monitor public areas such as metro

stations that provide live streams of multimedia data, or even multimedia repositories

owned by television or radio broadcasters that might be archived. The use of keyword-

based technology does not facilitate the creation and execution of intelligent queries

such as:

– When was a person or one of his peers last seen?

– When was the last time a person was in a certain area without the attendance of

a supervisor?

– When were persons X and Y simultaneously in the same place?

These queries should also be able to trigger alerts; a system’s desired feature would

be to produce a notification if one of these queries returns any results.

As far as context-aware systems are concerned, world concepts can be described

in detail using Semantic Web technologies. Most of the potential power in these ap-

proaches is that a world model can be bound to a reasoner and deduce implicit knowl-

edge, adding intelligence to the system. However, context-aware systems are often com-

plicated enough to the point that tasks like annotation and decision making become

unmanageable if not supported by automated procedures. Moreover, ad hoc formalisms

with insufficiently established semantics make context aggregation difficult [7]. But, the

use of a middleware facilitates context representation and processing at the infrastruc-

ture level, enabling the better reuse of derived context by multiple data consumers.

By closely investigating the contextual information processing procedure, we notice

that there is need of a unification of the feature extraction algorithms under a com-

mon terminology, in order to produce powerful results. Data that is collected by the

sensors is very often in a custom format. To create a context aware application based

on this received data flow, the data itself will pass through many stages until it is

converted from electromagnetic signal to human understandable information. We need

to define the boundaries of these processing steps along with the interfaces needed for

the communication of the various levels. Accordingly, we need to identify the reusable

components that can comprise a middleware without having to be reimplemented for

each application that uses them. This is exactly the purpose of the hereby presented

middleware.

Moreover, following the proposed implementation, problems such as false alarms

that can be produced by tracker errors can be dealt with. Even if an event erroneously

escapes from the tracker’s implementation, it can be dealt with at a higher semantic

level. For instance, suppose that a tracker mistakably recognizes an object and sends

the information to the middleware. A rule at the semantic level can state that if this

object did not have a continuous presence for e.g. two seconds, it can be a probable

error of the tracker.

It should be noted, however, that users of automatic annotation systems need to

be aware of their limitations. Broadly speaking these are missing annotations (known

technically as low recall) and incorrect annotations (known as low precision), and they

trade off against each other. However, organizations with large collections of legacy

data in particular, may prefer imperfect annotation than no annotation at all [8].
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2.3 Related Work

The work presented in this paper on one hand can be considered as an approach to

automated multimedia content annotation. On the other hand, the Priamos middle-

ware offers an infrastructure for building context-aware applications. Both points of

view concern semantic information enrichment. Thus, in the related work presented in

this Section we gather approaches that present conceptual similarities to the Priamos

approach.

Regarding the general domain of automated content annotation, we can observe

that it is highly active, with many suggested approaches, each with its own benefits and

drawbacks. According to [9], the information that a multimedia document conveys can

be formalized, represented and analyzed with three levels of abstraction: subsymbolic,

symbolic and logical.

The first level targets the raw data represented in well-known formats for video

and/or audio. A variety of algorithms exists for automatically recognizing and track-

ing specific features such as an object or a human face in video streams, or speech in

audio streams. Regarding face detection for instance, the Viola-Jones algorithm [10]

can be used. Similarly, for face recognition one can employ the PCA [11], LDA [12] or

ICA [13] algorithm, to name a few. Regarding face or object tracking, an algorithm

such as the Mean-shift [14], the Camshift [15] or a Kalman filter [16] can fulfill an ap-

plication’s needs. Also, speech recognition algorithms can be employed such as [17]. In

addition, several methods have been proposed in the bibliography for extracting events

of interest in audiovisual streams. In [18], an annotation mechanism for basketball

games is presented, while in [19,20] the targeted sport is baseball.

While the majority of these approaches can provide powerful results, annotation at

this level is not necessarily suitable for further processing in the sense that it cannot

cover the needs for integration of the essentially heterogeneous information originating

from various implementations. The next (symbolic) level addresses this issue. Many

standards such as MPEG-7, MPEG-21, Visual Resource Association (VRA), Interna-

tional Press Communications Council (IPTC), NewsML and so on, mainly operate

at this level. The purpose is to provide homogeneity in annotations in order to com-

bine the emerging results. However, the problem with these approaches is that each

annotation effort is syntactic – in the sense that only a structural approach is pro-

vided in each case – and tightly coupled with the characteristics of each vocabulary

and the corresponding multimedia stream format. This does not allow integration and

interoperability between annotated content. Therefore, the semantic (logical) layer is

needed.

The third layer offers semantic enrichment of the annotated information by mak-

ing use of Semantic Web technologies. Tools in this category include for instance Van-

notea [21] that can annotate collections of multimedia files, M-Ontomat Annotizer [22]

and the Ontology-based annotation system AKTive Media [23]. Also, user-centered

approaches for multimedia annotation have been presented, such as Armadillo [1],

KnowItAll [24] and the SmartWeb2 project where an unsupervised approach for RDF

Knowledge Base population is investigated.

As far as the pattern-based and rule-based approaches are concerned, we can see

only a few of them in the bibliography. These include CAFETIERE [25], a rule-based

system for generating XML annotations that was developed as part of the Parmenides

2 The SmartWeb project: http://smartweb.dfki.de/
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project and does not make use of Semantic Web technologies. The OntoLT Protégé

plugin [26] offers ontology extraction from text. In order to extract knowledge, it pro-

vides mapping rules, defined by use of a precondition language that allow for a mapping

between linguistic entities in text and class/slot candidates in Protégé.

The PICSEL project [27] has passed through several stages of development and is

still evolving, with PICSEL 3 starting in 20053. In PICSEL 3, the mediator integrates a

local data warehouse which is progressively enriched by external data. More accurately,

the main goals of the project include the Semantic treatment of the mediator answers

and the studying of the reconciliation problem in order to eliminate redundancies

and fusion data coming from different sources. Moreover, The SmartResource project

[28] presents a general adaptation framework that adopts a two-stage transformation

in order to represent the underlying XML-data in an RDF-based semantically rich

format.

Compared to the above-mentioned approaches, the innovation of the hereby pre-

sented architecture relies on the flexibility and adaptability of a middleware in contrast

to powerful, but case-specific approaches. The Priamos middleware provides an anno-

tation mechanism that allows the abstraction of the outputs of each annotation layer.

Trackers can be attached to a Priamos application that operate at the first (subsym-

bolic) layer, vocabularies can be chosen in order to provide the corresponding messaging

interfaces (symbolic layer) and finally, rules can be defined that fuse and semantically

enrich the information gathered, in order to provide a common Knowledge Base at

a logical layer. Moreover, as analyzed in Section 3.1 and measured in Section 5, we

propose an approach for the real-time processing of data, an aspect that was not in-

vestigated in any of the previous approaches.

From the context-aware point of view, there are systems related to the Priamos con-

cept that use ontological descriptions to express contextual information. For instance,

the Rei framework [29] uses RDF(S) or OWL Lite to represent context but the spec-

ification is limited to the terms of the Rei Ontology. We can also observe similarities

between the work presented here and CoBrA [30]. Older approaches that investigated

various aspects of the context-aware computing, like Ponder, the Context Toolkit [31],

HP’s CoolTown and the Intelligent Room project did not use a formal model to repre-

sent context information. The CHIL project4 looks similar to the work presented in this

paper as CHIL’s goal is to control sensor data through an ontology based mechanism

[32]. However, the description of the world model in CHIL is built/wired on the core

vocabulary of the CHIL OWL ontology, not allowing the adoption of other ontologies

targeting at different application scenarios, like in the hereby proposed system.

Semantic Web technologies specialized for ubiquitous computing have also been

applied in several environments such as in the Task Computing environment [33], Gaia

[34] and the SoaM Architecture [35]. However, unlike the aforementioned systems, the

work presented in this paper focuses mostly in providing a middleware environment

that does not restrict the users or developers to specific predefined vocabularies for a

world model description or a message syntax among the various pluggable components.

Emphasis is given in offering an architecture that is independent of ontologies and

sensors while in the same time adopts a common formal representation of context and

facilitates application development.

3 The PICSEL project: http://www.lri.fr/~sais/picsel3/
4 The CHIL project: http://chil.server.de
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Commercial products that offer a complete RDF-based middleware have also made

their appearence, such as Talis5 or OpenLink6. Nevertheless, the purpose of this kind

of middleware neither address real-time issues nor does it focus on context-aware mul-

timedia applications. They are mostly focused on Web data.

The work here is also inspired by the one presented in [36] and moves on by sup-

porting interoperability in various types of sensors as described in Section 7. The work

in [36] is mostly focused on video analysis, which is also the case for VERL [4]. In the

work presented here, video trackers are employed as a proof of concept and they could

cleanly be substituted by e.g. speech detection trackers. As it is shown in the next

Sections, Priamos offers an approach for bringing contextual multimedia annotations

(metadata) to a higher level, by abstracting and splitting contextual information and

annotation mechanisms.

3 Anatomy of the Middleware Architecture

This Section describes the infrastructure (see Figure 1) upon which solutions can be

built that deal with situations where conventional content annotation is not sufficient

and the need for Semantic annotation emerges. The middleware is designed with the

aim to be configurable to any circumstances that can be modeled with the use of sce-

narios. The architecture comprises a set of core reusable distributed components for

the real-time annotation of low-level context features and their mapping to higher-level

semantics which are directly exposed through suitable APIs for application develop-

ment. The main idea is to launch a procedure that annotates contextual multimedia

information upon its appearance by using specific sets of rules. The resulting Knowl-

edge Base reflects a spherical perception of the world model. An early description of

the system was presented in [37].

First of all, the architecture abstracts the outputs from low-level, heterogeneous

data sources (e.g. sensors, feature extraction algorithms, content repositories), thus

enabling context capturing in varying conditions. Context annotation is configured

through application-specific ontologies which can be plugged and it is automatically

initiated without any further human intervention.

The basic components of the system are the data sources that are combined to low-

level feature extraction components such as trackers, the user terminals running the

applications, the administration console that handles the server and the Knowledge

Base. Upon this infrastructure, intelligent applications can be built, communicating

with the middleware via the Web Service API exposed. Figure 1 illustrates the different

middleware components.

The trackers are the first ones to process raw data. Once initiated, they produce

messages containing descriptions of the features captured from the sensors. Through

these messages, knowledge is transferred to the main middleware server, it is converted

into semantic information via rules, and a Knowledge Base is created where all the

features of interest captured by the sensors are gathered. Section 3.1 presents a closer

view into what goes on behind the scenes during the middleware operation.

5 Talis homepage: http://www.talis.com
6 OpenLink software homepage: http://www.openlinksw.com
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3.1 Real-Time Message Processing

As depicted in Figure 2, the data are firstly aggregated and adapted, and then they are

processed. Events that occur in real world comprise the raw data detected by sensors.

Tracking algorithms are applied to these raw data and their results are sent via a Web

Service message (technically an XML document enclosed in a SOAP envelope) to the

middleware. When the message is received by the middleware, it is first checked for

its validity. The only restriction for incoming messages is that they have to be in well-

formed, valid XML format. The middleware poses no extra constraints. Firstly, the

message is processed by the set of mapping rules. All of the mapping rules are applied

to the incoming message. As a result of applying the mapping rules, the temporary

Knowledge Base is updated with the new facts.

Consecutively, the set of the semantic rules is applied. This set of rules checks the

conditions and performs actions related to the Database model, regardless of the con-

tents of the XML message. This level of abstraction was chosen for two reasons; firstly

because it separates XML mapping from semantic rules, facilitating the authoring pro-

cess and secondly, because this processing phase can take advantage of the evolution

of Semantic Web rule languages. Moreover, this approach decouples the annotation of

the produced multimedia content with the desired application logic.

After the message process has terminated, the temporary ontology model has been

updated. All added information is now stored in the ontology and what follows is the

processing of the ontology itself. The rules are applied one by one keeping the model

up-to-date with its context environment. New knowledge is potentially stored in the

Knowledge Base after the arrival of each message. A technical analysis is presented

in Sections 4.1 and 4.2 where two distinct scenarios are presented and the practical

aspects are covered in more depth.

The maintenance that takes place in the last step of processing incoming messages

can be configured according to the overall application. For the needs of our experiments,

we considered two variables: the response time, which is the most important element

of real-time systems, and the size of the ontology that directly affects the response

time. The system can be configured with respect to either the response time or the size
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Fig. 2 Information flow: The set of the mapping rules is first applied to each incoming message.
Then, the set of the semantic rules are applied. As a result, the ontology model is expanded
and the new facts are added to it

of the ontology. The results exposed in Section 5 justify the real-time property of the

middleware in terms of respecting the deadlines apposed and avoiding failure.

Technically speaking, the information flow initially begins as electromagnetic sig-

nals captured by a sensor. The tracker algorithm that runs on the sensor recognizes an

event of interest, according to the kind of the sensor and the tracker. For instance, a

camera (sensor) running the Viola-Jones algorithm (tracker) might recognize a human

face in its domain of perception. This information has to be written in an XML file

in accordance with an XML template that acts as an interface between the tracker

and the middleware. This XML message is sent via Web Services to the middleware

where the Mapping rules and Semantic rules are applied to it in order to store the new

information in the system’s Knowledge Base.

The main limitations of the approach are related to the real-time processing of the

data. Theoretically, the system can be adjusted to any environment conditions. How-

ever, in practice, the user that composes the rules that define the system’s behaviour

is required to take extra care as conceptual mistakes can lead the Knowledge Base into

growing out of bounds in short time. As an example, a rule that will trigger a new

individual insertion after every incoming message will lead the ontology size to expand

proportionally to the number of the incoming messages and will drastically reduce the

real-time performance beyond acceptable times. The measurements that are presented

in Section 5 are based on this rationale.

3.2 Software Modules

The modular software architecture mainly comprises an exported Web Service inter-

face, the message templates, the ontology models, a set of mapping rules, a set of

semantic rules, a set of available actions/notifications, the external reasoning server

and finally the low-level components (e.g. sensors and trackers). This approach en-

sures its extensibility and adaptation to newer technologies. Every module is described

analytically below.

Web Service interfacing module. The most important task of the Web service

module is message manipulation. What is required from the messages that are sent

from the Data Acquisition Layer (see Figure 1) is that they be expressed in any arbi-

trary well-formed XML document, without any additional constraints. When a message

arrives, it is processed by the XML Mapping and Semantic Rules that the user has

created in order to achieve the desirable behaviour. As far as the applications are con-

cerned, the API contains functions to control the software modules and is described in

better detail in Section 3.5.
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Message Templates. The received messages can conform to any specifications

we might choose. As previously mentioned, the only necessity is that the messages are

well formed XML documents. Figure 3 shows a screenshot of the GUI offered by the

administrative application through which the user can compose Mapping Rules that

map paths in the XML tree of the message template to ontology classes. Information

contained in the messages concerns environment elements such as person locations or

time. Message templates are customizable according to the needs of each application.

A message template can optionally have an attached DTD or XSD description.

An application can have several message templates, according to the messages that

are expected to be sent by the trackers to the middleware. Different message templates

can be chosen for different types of trackers. The structure of each message template is

taken into account by the mapping rules applied to it, performing message separation.

This separation enables message fusion at a semantic level with the use of Semantic

rules.

Ontology models. An ontology model describing the classes, properties and their

taxonomies is required for the system to work. The choice of an authoring environment

is up to the user7. The ontology can be inserted to the middleware programmatically

via the API exposed or via the Ontology Manager of the Administration Application

(Section 3.3).

The ontology model is then stored using the Jena [39] internal graph engine. The

Jena framework has developed its own methodology for storing and retrieving ontology

information. In fact, the ontological model is stored in a relational Database in triples

(statements of the form Subject, Property, Object) and form the underlying graph of

the model. Jena allows many serializations of an ontology model, such as RDF/XML

or N3 notation but the relational database backend is preferred in larger-scale projects

because of several factors such as scalability or collaborative editing.

The annotation is kept in the Knowledge Base, separately from the incoming data

that could be of any form, varying from simple text to A/V content and multimedia

in general. Links to them are stored making possible a future retrieval.

In order to guarantee system’s scalability, the ontology model that handles the

incoming messages, i.e. the temporary ontology model, is kept in a different database

from the persistent ontology model. The tradeoff for this approach is that the reason-

ing that takes place for every new message is aware of the facts that are stored in

the temporary ontology model. Scheduled maintenance is responsible for migrating the

facts from the temporary ontology to the persistent storage. This scheduled task can

take place either synchronously or asynchronously. The former case indicates that the

migration can be triggered by an incoming message while the latter that the migra-

tion schedule can be running as a daemon according to specified time intervals. Our

approach follows the synchronous scheduling as shown in Figure 8.

We also must note that the use of several Semantic Web vocabularies is possible,

desirable and encouraged in order to allow unambiguous definitions of the concepts

involved in any application. Vocabularies such as Dublin Core Metadata Initiative

for digital content8, Creative Commons for licence information9, or the Friend Of A

7 According to [38] the most used ontology authoring environments are Protégé, SWOOP
and OntoEdit.

8 Dublin Core Metadata Element Set: http://www.dublincore.org/documents/dces/
9 Creative Commons, Describing Copyright in RDF: http://creativecommons.org/ns
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Friend (FOAF) network10 provide the means for real semantic interoperability between

applications.

Rules. Rules are essential in depicting the desired behaviour of context-aware sys-

tems. It is really convenient that the model-theoretic background of the OWL language

[40] is based on Description Logics systems that are a subset of the First Order Pred-

icate Logic. What is gained with the contextualization of a world model according to

Description Logics is that first, the designed model has fully defined semantics and

second, Horn-like clauses can be formed upon it. These clauses can be seen as rules

that predefine the desired intelligence in the system’s behaviour.

The Priamos middleware comprises two distinct sets of rules. The XML Mapping

Rules (or simply Mapping Rules) and the Semantic Rules. The rules are formed ac-

cording to the following event-condition-action (ECA [41]) pattern:

on event if condition then action

where the event in the Priamos case is the message arrival. The Mapping Rules

fetch data from the XML message and store it into the ontology model in the form of

class individuals. They rely on the fact that for every XML element there is a unique

XPath11 expression that retrieves its value.

The Semantic Rules on the other hand perform modifications on the ontology

model. Therefore, despite the common syntax, the conditions and actions differ in

each case as it is shown in Appendices A and B. The distinction of two variants of

rules was inspired by the similar distinction between the RDF-only and the RDF-

XML-combining subsets of RuleML [42] [43]. In our case, this distinction allows the

processing of the messages in two steps. First, by taking into account specific XML

elements in each incoming message, the middleware is able to separate the messages

from various trackers. Second, the incoming information can be fused with the use

of Semantic rules. Detailed examples are provided in Section 4, where two test-case

scenarios are presented in more detail.

The Reasoning Server. As stated in [44], a Knowledge Base is the combination

of an ontology and a reasoner, thus the presence of the latter is indispensable. There

is a variety of available reasoners, commercial like RacerPro or OntoBroker, free of

charge like KAON2 [45] and open-source like Pellet [46] and FaCT++ [47]. All of

them support DIG [48] interoperability which is not a standard yet but it is used

by reasoners to exchange HTTP messages with programs that call them. Jena also

supports the binding of an external reasoner, and provides a less adequate internal

reasoner as well. The previously mentioned reasoners can function as stand-alone DIG

servers and communicate with the Priamos middleware, leaving the reasoner choice up

to the user. Figure 7(a) demonstrates the results we obtained by using Pellet, FaCT++

or no reasoner at all during system’s operation.

Trackers. The trackers are the first ones to process raw data. They apply special

algorithms and techniques to the signal captured by the sensors (e.g. object/human de-

tection, face detection, recognition and tracking, audio localization) in order to identify

features of interest. Once initiated, the trackers produce XML messages that describe

their awareness of the world. Through these messages, knowledge is transferred via Web

Services to the main Priamos server. Thus, any tracker, able to produce a Web Service

message is pluggable in the middleware architecture. For the scenarios described in

10 FOAF Vocabulary Specification: http://xmlns.com/foaf/spec/
11 XPath 2.0 is a W3C recommendation since Jan. 23, 2007: http://www.w3.org/TR/xpath20/
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Section 4, the Viola-Jones [10] algorithm for face detection and Camshift [15] for face

tracking were used.

3.3 Administration Application Description

The tools that are used to handle the various components are developed in Web envi-

ronment and they consist of: the trackers, the ontology manager, the message template

manager, the action manager, the message to ontology mapper and finally, the Seman-

tic rule composition mechanism.

Ontology manager. The user can upload models to the system and store them

in two forms: in plain text in the database, and using Jena’s persistent storage engine.

The ontology text is stored in the database for portability purposes; it could as well

be stored in a plain text file. The user decides which description language he should

use: RDF(S) [49] or OWL [50] [40] [51]. The system’s ontologies have no theoretical

limitation in description and evolution. The only profound limitation is that using the

OWL Full variant of the OWL language, will not be supported by a reasoner. In any

other case, consistency will be guaranteed by the reasoner. We also note that ontologies,

today, are easy to find on the Web12 and usually it is more convenient to customize

an ontology according to an application’s needs than to start authoring from scratch.

Message template manager. The messages that can be received are stored in

the database because they are needed during the mapping process. The user can add

and delete message templates. Validation is carried out during the insertion to ensure

future unimpeded function.

Action manager. We offer control of the actions that may be triggered while

the Semantic Rules are processed. At the moment four types of actions have been

implemented whereas new application-specific actions can be added through the ad-

ministration application or the middleware API.

– Send SMS: The Priamos middleware can send an SMS to the mobile phone of the

users when an important event takes place

– Send email: According to the events handling, the users can also be informed by

email

– Send Web Service message: The Priamos middleware can call an external Web

Service

– Run an application: An external application can be executed either locally or re-

motely.

Message to ontology mapper. We have developed a mapping language to allow

the composition of rules that will bind each message to the classes of an ontology. The

developer can assign Mapping Rules to specific models. These rules will be processed

one by one upon the arrival of each message and they are responsible for adding

the extra information in the ontology. The Mapping Rules follow the rule grammar

described in Appendix A.

An example of a Mapping Rule can order the system to check whether a specific

element exists in an incoming message or not. If the check is successful, then the rule

commands the system to insert an individual to a certain class in the ontology. For

example, the rule: if XPath exists then insert individual in OntClass, can be

12 Among the most reliable sources is the prominent Swoogle (http://swoogle.umbc.edu).
Noticeable results are also produced with the filetype:owl or filetype:rdf google operators
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Fig. 3 Mapping rules authoring. The user selects paths in the XML tree of the message
template and authors rules that map these paths to concepts of the ontology hierarchy

used to insert an individual in class Person if the path Message/Event/Person exists

in the message. The Mapping rule composer, part of the Administration application,

displays the ontology hierarchy on the left, the XML tree on the right and the defining

rules underneath, as shown in Figure 3. The composer allows the user to graphically

define and process the Mapping rules of the application built on top of the Priamos

middleware.

Semantic Rule composition. The application developer can define rules that

are processed on the model. The developer does not have to be a domain expert or

have specific knowledge of the underlying infrastructure. The Semantic Rules follow the

rule grammar described in the Appendix. An example of a rule that can be declared is:

if OntClass has individuals then Alert (Message). In this case, the system will

call a predefined action named Alert (i.e. an SMS, an email, a Web Service message

or an external command) if the check for individuals in a class e.g. DangerousEvent

returns true. A graphical authoring tool is provided based on this rationale for the

composition of rules by non-expert users. The Semantic Rule composer component

of the administration application displays the ontology hierarchy on the left and the

defining rules underneath, in a way similar to the Message to ontology mapper shown

in Figure 3.
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3.4 Users and Roles in Priamos

The Priamos core functions facilitate application development, in different scenarios

and context configurations. Users that benefit from the Priamos technology are classi-

fied into two categories: developers and end users.

Developers. They have the responsibility of defining the Mapping Rules from the

incoming messages to the ontology concepts. Instead of developing application specific

code each time, the developers can exploit the core middleware functionality. They

can “plug” an ontology, form Semantic Rules on the ontology, and define the actions

that can be taken. They have the freedom to tune the system’s behaviour as wished,

through Priamos provided event handlers and callback functions.

End users. They have the overall supervision of the system’s functions and can

configure it for different operation scenarios. The end users can define features of in-

terest to be captured (e.g. when a security alert should be triggered). They can be

simply monitoring a system operation session, or waiting to receive automated notifi-

cations in form of a sound, an email, a call, an alert in general (e.g. a security guard

in a security-surveillance scenario who receives alerts in his mobile). No expertise or

knowledge of the system’s underlying infrastructure is required from the end users.

3.5 The Priamos API

In order to make Priamos middleware easily adopted to external applications we have

created a set of functions that a developer can call. The middleware exports a Web

Service API through which an application can model its logic. For instance, through

the Priamos API we can have the middleware setup in a single application. No further

actions are needed than a script execution in order to have the middleware up-and-

running. A summarization of the Priamos API functions is shown in Table 1.

Message Templates Semantic Queries Turn On/Off Middleware
insertMessageTemplate getQueryNames turnOnMiddleware
removeMessageTemplate insertQuery turnOffMiddleware
getMessageTemplateId removeQuery getMiddlewareStatus
getMessageTemplateNames getQueryContents

Ontology Models Rules Alerts
insertOntology insertMappingRule insertAction
removeOntology insertRule removeAction
getOntologyId removeMappingRule getActionPathToExecutable
getOntologyNames removeRule getActionNames
getOntologyContents getMappingRules

getRules

Incoming Messages
priamosMessage

Table 1 A short summary of the exposed Web Service Priamos API functions

The methods offered by the Priamos API include manipulation of the ontology

models, message templates, rules and actions of the application, along with general-

purpose functions such as to turn on and off the middleware message processing. They
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can be called during the different phases of its operation. The rationale behind imple-

menting a Web Service API is that the technology independent Web Service allows

ease of integration of trackers or applications regardless of the platform of their imple-

mentation.

4 Test Case Scenario: Priamos in Action

Great effort has been put into creating, managing and administering Semantic infor-

mation. Nevertheless, it is common belief that the Semantic Web is not yet established

because of lack of applications that exploit the Semantic information. In order for the

semantic information to be more widespread, it should be clear how it is useful and

how the end user benefits from its existence. This Section demonstrates and analyzes

two scenarios, two applications that are based on the middleware described in the pre-

vious Section. The purpose of the hereby analysis is the justification of the claim that

adoption of Semantic Web technologies brings actual intelligence to the application.

Subject Property Object
default:Actor rdf:type owl:Class ;

owl:disjointWith default:Event , default:Location .
default:Known rdf:type owl:Class ;

rdfs:subClassOf default:Actor .
default:Unknown rdf:type owl:Class ;

rdfs:subClassOf default:Actor .
default:Professor rdf:type owl:Class ;

rdfs:subClassOf default:Staff .
default:Staff rdf:type owl:Class ;

rdfs:subClassOf default:Known .
default:Student rdf:type owl:Class ;

rdfs:subClassOf default:Known .
default:Undergraduate rdf:type owl:Class ;

rdfs:subClassOf default:Student .
default:Postgraduate rdf:type owl:Class ;

rdfs:subClassOf default:Student .
default:hasXLocation rdf:type owl:DatatypeProperty ;

rdfs:domain default:Actor ;
rdfs:range xsd:int .

default:hasYLocation rdf:type owl:DatatypeProperty ;
rdfs:domain default:Actor ;
rdfs:range xsd:int .

default:hasCertainty rdf:type owl:DatatypeProperty ;
rdfs:domain default:Actor ;
rdfs:range xsd:int .

Table 2 The ontology that supports the Security surveillance scenario

4.1 Security surveillance scenario

In this Section, we describe a smart security surveillance scenario based on the proposed

architecture and the exposed API. The scope of the scenario is to better clarify the



17

functionality and the benefits of the use of the middleware. In this use-case scenario,

an application is built on top of the Priamos middleware and it is used to monitor a

room and request alerts in case different events take place. The environment consists

of a series of cameras, the Priamos middleware and the Surveillance application13.

Firstly, we present in Table 2 a fraction of the ontology that supports the surveil-

lance scenario. Ontology authoring was inspired from [52] where the authors adopt

an approach based on the concepts of resource, actor, and environment in order to

describe a context model.

In short, the class of importance for the scenario is the class Actor that has two sub-

classes: Known and Unknown. Class Known has two subclasses Staff and Student. Staff

has only one subclass, Professor, and Student has two subclasses: Undergraduate and

Postgraduate. The datatype properties hasXLocation, hasYLocation and hasCertainty

apply to all of these classes.

Firstly, once the system is activated it detects automatically the type of devices

that are connected to it (i.e. cameras and microphones). Then an end user connects

online to the control panel of the middleware and checks the trackers that it recognizes,

in our case two trackers for movement recognition. The trackers return messages in

XML format, e.g. the Body Tracker recognizing a human body in its visual range

returns coordinates. Note that the message retains a reference to the url of the original

multimedia file as the value of the url property.

<Event id="5712">
<Tracker type="FaceTracker">

<DataSource id="3" name="CeilingCamera" url="http://localhost/seq_0077.jpg"/>
<person id="1" certainty="100">

<location2d datasourceId="3" x="429" y="46"/>
<face dbpersonid="10" name="John" certainty="91"/>

</person>
</Tracker>

</Event>

For our example purposes, we incorporate a Face Tracker that implements two

algorithms; the Viola-Jones algorithm for face detection [10] and the Camshift [15]

algorithm for face tracking. The face detection algorithm is preconfigured to recognize

a fixed set of persons. Camera input is analyzed in real-time, producing the rectangle

areas in the screenshots in Figure 4 (and later, in Figure 6) and XML messages of the

previously discussed form.

The first event that the system captures is when a new person (a new face) appears

on screen. For our surveillance scenario we first check the persons entering the room.

A Mapping rule that checks the incoming messages for persons is the following:

if,xml element has value,/Event/Tracker/person/face/@dbpersonid,eq,10,then,
insert individual in class,Professor,
and set datatype property,hasXLocation,/Event/Tracker/person/location2d/@x

This rule checks the incoming XML message and, if a certain condition is met

(i.e. a specific path in the message to have a specific value), a new person will be

inserted in the Knowledge Base. However, in real world conditions, the rules will be

more complicated as we would also modify several other datatype properties of the

13 Not to be confused with external software applications, here by the term “application”, we
note an application built on top of the middleware, i.e. the middleware configured for specific
sensors, ontology models and message syntax.
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(a) (b) (c)

Fig. 4 In (a) the Viola-Jones algorithm detects a face of a person that enters the room. In
(b) and (c) we see the Camshift algorithm tracking two faces

individual such as his coordinates and object properties such as the event in which

the individual participates. Moreover, in order to deal with possible inconsistence in

the outputs of the trackers, we would apply a certainty threshold (e.g. accept an event

only if the tracker gives a certainty greater than 90 percent). As an example of a more

concise rule that satisfies these requirements, we would state:

if,xml element exists,/Event/Tracker/person,and
xml element has value,/Event/Tracker/person/face/@dbpersonid,eq,10,and,
xml element has value,/Event/Tracker/person/face/@certainty,gt,90,
then,
insert individual in class,Professor,
named after,/Event/Tracker/person/face/@name,
and set datatype property,hasXLocation,/Event/Tracker/person/location2d/@x,
and set datatype property,hasYLocation,/Event/Tracker/person/location2d/@y,
and set datatype property,hasCertainty,/Event/Tracker/person/face/@certainty

Similarly, the system can be trained to recognize the persons that the face tracker

recognizes, simply by mapping their id (10 in the example above) to the corresponding

class in the ontology. This rule will lead to the insertion in the ontology of a triple of

the following form if the person is recognized e.g. as a Professor:

default:John rdf:type default:Professor ;
default:hasXLocation "429"^^xsd:int .

If the tracker finds a person that is not recognized, the triple that will be added to

the model will have a form similar to the following:

default:Unknown_1 rdf:type default:Unknown ;
default:hasXLocation "429"^^xsd:int .

Another rule could insert a person that the system recognizes to the class Student,

etc. so that the system can be adjusted according to our knowledge of the world.

In continuation, the Semantic rules are executed. Given the abundant Priamos

rule language (fully described in Appendices A and B) several precautions have been

declared. The following rules are Semantic rules, and they are responsible for the alerts

produced by the middleware, based solely on the ontology’s state.

i) It is not allowed to a Student to enter or stay in the room without the attendance

of a Staff member. This rule can be expanded in other scenarios; the use of classes Staff

and Student is not restrictive.
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if,class has individuals,Unknown,and,
SPARQL query does not have results,
SELECT ?x ?y WHERE {

?x rdf:type default:Staff .
?x default:hasTime ?time1 .
?y rdf:type default:Student .
?y default:hasTime ?time2

FILTER (?time1 = ?time2) }
then,
alert ("Unknown unattended person detected")

ii) During working hours only known persons are allowed.

if,SPARQL query has results,
SELECT ?x ?y WHERE {

?x rdf:type default:Unknown .
?x :hasTime ?y .

FILTER (?y > "20:00:00"^^xsd:time || ?y < "08:00:00"^^xsd:time) }
then,
alert ("Unknown person detected during working hours")

iii) When high-security level time (e.g. after 23:00 and before 7:00) nobody should

enter the room.

if,datatype property in class Actor,gt,"23:00:00",and,
datatype property in class,Actor,lt,"07:00:00",
then,
alert ("Person Detected during High-Security Level Time")

In the above cases, alert is a command that might turn on the lights, set an alarm,

send an email, an SMS or a Web Service message. For example if a person is detected

in the room under surveillance before 7:00 in the morning, a guard can be notified by

an alarm and a SMS can be sent to his mobile.

The benefits of the current approach can be summed up in the use of intelligence,

the expressiveness in defining the desired system’s behaviour while at the same time

dealing with the real-time processing of the incoming bulk of metadata. In addition, a

searchable Knowledge Base is offered for future exploitation.

The reason that justifies the use of Semantic Web technologies is that firstly, the

created system can be adjusted easily to different scenarios and thus presents increased

reusability. For rule (i) for instance, instead of using classes Staff and Student we

could have classes Adult and Minor for another scenario, or any two classes, Class A

and Class B whose parallel existence we wish.

Second, a simple rule that checks the existence of a Student (i.e. the statement

if,class,has individuals,Student), combined with the reasoning procedures will

calculate among the results individuals of the classes Postgraduate and Undergraduate,

eliminating the need for declaring extra rules. The same holds for the class Staff in

which are also counted the individuals of its subclasses. Thus, the rule (i) captures a

series of combinations of coexisting individuals from classes that are connected between

them with super/subclass relationship.

We are mostly relying on the super/subclass relationship of the model in the scope

of the examples but the use of a reasoner unleashes all the OWL DL potential in world

description.
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4.2 Smart Meeting Room

Additional testing was conducted under the terms of a different scenario, the scenario of

a smart meeting room. The scenario’s purpose is to investigate the ease of the system’s

adoption under different and more complex system’s operational requirements. In this

scenario, a room is monitored, in which meetings take place. All of the persons are

waited to be present before the meeting starts. During the meeting, one person goes

to the presentation area and starts his/her presentation while the rest of the persons

are sitting. After the end of the presentation, the person sits down with the rest of the

participants and continue the meeting. The meeting ends when all of the participants

leave the room. In this scenario, we can notice four distinct system states, which are

depicted in Figure 5.

Fig. 5 State diagram of the Smart Meeting Room scenario

The sensors and trackers of the Security surveillance scenario are employed here as

well, with the addition of a move detection tracker that is connected to a panoramic

camera placed on the ceiling of the room. Hence, x and y coordinates in this scenario

refer to the persons’ locations in the room.

The ontology that supports this scenario is similar to and extends the ontology

that supports the Security surveillance scenario (Table 2). The only addition necessary

is a class State with a datatype property hasState, that holds information about the

system’s state. The rules that support this scenario are the following:

A Mapping rule. The Mapping rule that transforms the incoming XML messages

into semantically enriched information is similar to the Mapping Rule presented in the

Security Surveillance scenario.

if,xml element has value,/Event/Tracker/@type,eq,"PanoramicTracker",and,
xml element exists,/Event/Tracker/person/@id,then,
insert individual in class,Person,
named after,/Event/Tracker/person/@id,and
set datatype property,hasYLocation,/Event/Tracker/person/location2d/@y,and
set datatype property,hasXLocation,/Event/Tracker/person/location2d/@x,and
set datatype property,hasTime,/Event/Tracker/TimeStamp/@value"

Eight Semantic rules (four pairs). These rules define the transitions between the

system’s states and the middleware’s actions. In fact these rules implement the model

in Figure 5. Below follows an example for the transition from “Meeting Started” state

to “Presentation Started” state. The numbers in the rules define the coordinates of the

presentation area.

if,datatype property in class,System,hasState,eq,Meeting_Started,and,
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datatype property in class,Actor,hasXLocation,gt,400,and,
datatype property in class,Actor,hasYLocation,gt,300,then,
send web service message,"Presentation Started!"

if,datatype property in class,System,hasState,eq,Meeting_Started,and,
datatype property in class,Actor,hasXLocation,gt,400,and,
datatype property in class,Actor,hasYLocation,gt,300,then,
execute SPARQL query,
PREFIX default: <http://www.example.org/meeting.owl#>
DELETE { ?x default:hasState ?z }
WHERE { ?x default:hasState ?z }
INSERT { default:System_State a:hasState ’Presentation_Started’}

As a result, besides the real-time alerts that the system can provide, the Knowledge

Base that is created can answer to queries such as:

– When did a certain person make a presentation?

– When was the last time a guest (an unknown person) made a presentation?

The application is of higher complexity because of the larger set of Semantic rules

and the additional burden is reflected in the measurements in Figure 8.

5 Performance Evaluation

The Priamos middleware was thoroughly tested about its scalability. While measure-

ments were taken using a Linux server, based on an Intel Core 2 Quad at 2.40 GHz, 3

GB RAM, the relations among different sets of test are indicative and independent of

specific computing system composition.

The environment of our tests consisted of a camera, connected to a computer

running the Viola-Jones algorithm for face recognition and the Camshift algorithm for

face tracking. The middleware was connected to a camera producing XML messages

that were sent through a Web Service to the computer running a preconfigured version

of the middleware. The system was configured so that it would capture faces from the

camera’s visual range, track them and send information to the server. In continuation,

the server populated a given ontology with individuals and store information about

the individuals’ location and time. The reasoner was bound to the underlying model

of the ontology for each incoming message and assertional information was deduced

using combinations of Mapping and Semantic Rules.

Our data sets included various versions of trackers that performed operations on

video surveillance results. In Figure 6, it can be seen that erroneously, early versions of

the face tracker recognized persons in the video, providing us with a number of persons

that would otherwise be unavailable. Thus, in the datasets, “faces” appear in certain

locations, are being followed by the face tracker and disappear in later scenes. This

provides videos in which a large number of “faces” are born and lost, simulating the

system’s operation on active, lively environments.

In Figures 7 and 8 the axes represent the Process time in function of the incoming

messages. As Process time, is considered the time spent from the arrival of a Web

Service message from a tracker till its storage in the Knowledge Base. In other words,

the process time is the time it takes for both Mapping rules and Semantic rules to be

executed upon the arrival of an XML message. The Incoming messages represent the

number of the messages that have been received from the middleware. The running
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(a) (b)

(c) (d)

Fig. 6 Instances of data used for measurements. It can be clearly seen in (b) that because
of an incomplete and early version of the trackers, the system has already recognized 41 faces
while actually only 2 entered the room. This provided the input for our measurements

average in the graphs constitutes the average process time based on the latest 50

messages for any given message. Its purpose is to normalize the fluctuation in the

process time of each message and give a clearer picture on the results (see also Figure

10(a) and 10(b)).

Figure 7(a) demonstrates the results of testing the system’s behaviour under the

same conditions with the only difference in the reasoner server employed. The reasoners

tested were Pellet and FaCT++ and, as shown in the figure, they produced similar

results with the former being slightly faster.

Figure 7(b) demonstrates the system’s behaviour under three conditions. The Map-

ping rules are “dummy” rules that insert a new individual in an ontology class for each

newly arrived message causing the size of the ontology – and specifically, the ontology’s

ABox – to explode. These measurements were conducted with the first versions of the

middleware and they led us to reckon that the need of a synchronous maintenance

method as shown in Figure 8 is indispensable.

Meanwhile, we can observe in Figure 7 (a) and (b) that the absence of a reasoner

reduces the time needed for processing each incoming message. This is justified by the

fact that no inference needs to be performed on the ontology and thus a big calculation

burden is avoided. The tradeoff in that case is a loss in the accuracy of processing the

rules. For instance, a rule atom stating “if class has individuals” will wrongly

return false if the individuals are not direct individuals of the class and belong to one
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Fig. 7 In (a) a comparison of reasoning servers is presented and from (b) we can deduce that
the processing time depends on the size and complexity of the rule sets

of the subclasses, since they will not be discovered at all. Absence of reasoning services

is a great boost for performance. In the experiments conducted, we noticed a decrease

of system latency. However, the lack of reasoner support means that no intelligence is

added to the system. Thus, the absence of a reasoner is discouraged and it is suggested

only in cases that knowledge extraction is a minor feature.

Inevitably, the use of reasoner causes the ontology model to increase leading to a

further increase of the latency of the system. The proposed solution to that problem is

the synchronous maintenance operation on the ontology model, configured to alleviate

ontology’s load. The saw-like graphs shown in Figure 8 were created with the use of

synchronous process of the incoming data. The thresholds in each case were chosen

in order for the resulting graphs to be competently illustrative of the application’s

behaviour.

In Figure 8(a), the maintenance method used aims at keeping latency under the

threshold of two seconds while Figure 8(b) performs maintenance when the number

of the triples in the ontology model exceeds 180. In both cases, when the threshold

is reached, the ABox of the ontology (the individuals) are moved from the temporary

ontology model to the persistent ontology with the use of the SPARQL/Update14

language [54]. Both methods demonstrate similar results. It can be seen from the

results in Figure 8(c) and (d) that the meeting room presents bigger response times

than those in the simple surveillance scenario, a fact which is due to the size and

complexity of the rule sets.

In practice, lower thresholds in either the process time or the size of the ontology

restrict the system’s awareness of the world. This happens because for the real-time

processing of the incoming messages, the system’s perception of the world is bounded

to the temporary ontology model. As shown in the graphs, the thresholds that define

the “capacity” of the temporary ontology model should be kept high enough in order

for maintenance operations to take place in adequately sparse time intervals.

In order to evaluate more objectively the performance of the middleware in terms

of speed, we conducted a series of measurements out of the scope of the two scenarios

previously presented. The measurements below were taken on a set of offline data, a

14 Delete or Update functions are not included in the W3C SPARQL recommendation [53].
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Fig. 8 In (a) and (b) we can see the behaviour of the Surveillance monitoring application and
in (c) and (d), the Smart meeting room application. Reasoning support is enabled and latency
is maintained at certain threshold. In (a), the response time is kept under 2”, in (c) under 3”,
while in (b) the ontology triple entries are kept under 180 and in (d) under 80

series of XML files containing information captured by cameras, processed by a face

detection/recognition tracker and a face tracker.

Among the most important observations is that the threshold that the user can

set directly affects the time intervals between maintenance operations. In the two ex-

periments whose results are displayed in Figure 9(a), every other parameter was kept

the same, except the threshold, that was set in 1600 and 800 milliseconds respectively.

We notice that higher thresholds (time thresholds in these cases) lead to less frequent

maintenance operations. Also, we observe that a more dense flow of incoming messages

(e.g. from more or faster trackers) will shrink the time intervals between maintenance

operations in Figure 8. Poor choices in rule composition, ontology model, reasoner

and/or RDBMS will shift up the graphs. Reversely, optimization in each component’s

properties will cause the graphs to expand horizontally and/or shift down. The impor-

tant observation is that under any circumstances the graphs retain their designative

saw-like form, with the process time always restrained under the imposed threshold.

The next experiment, as depicted in Figure 9 (b) and (c), demonstrates that the

process time is directly proportional to the triple size of the ontology in the temporary
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Knowledge Base. Due to this fact, the threshold for each application can be arbitrarily

chosen to be either in milliseconds or in triples. However, as it can be seen in Figure

9(c), the performance of an application will be improved for relatively large ontology

sizes. In other words, a relatively low threshold (below approximately a 100 triples

in this experiment) is not profitable for the performance of an application as a high

Process time/triple will appear.
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Fig. 9 In (a) we can see that higher thresholds lead to less frequent maintenance operations. In
(b) it is demonstrated that the process time of each incoming message is directly proportional
to the size in triples of the temporary Knowledge Base. In (c) we can see that the process time
per triple in the temporary Knowledge Base is high for relatively small ontology sizes, but it
is stabilized for larger ontologies

Figure 10 demonstrates the results of the next experiment: the behaviour of a

single tracker plugged in the middleware. The threshold is set to 160 triples. Figure

10(a) depicts the actual time in which the client receives an acknowledgement from

the middleware that each message sent was processed correctly. In 10(b) and 10(c), the

running averages from the latest 50 messages are displayed (as in Figure 8) in order

to demonstrate the similarity in the client and the server response times, normalizing

any small fluctuations. As expected, the behaviour is identical through time. The only

latency overhead is caused by the network, as shown in Figure 10(e). This overhead

remains steady at approximately 100 milliseconds and it can be considered insignificant.

We must also mention that the measurements agree with our previous observation: the

process time of the server for each message is directly proportional to the number of

the triples in the temporary Knowledge Base, as it is shown in 10(d).

With three clients operating concurrently over the (same) data, the measurements

demonstrate a more interesting fact. Figure 11 depicts the behaviour of a Priamos

application with three clients operating concurrently on a set of offline data. Each one

of them sends 3000 messages to the middleware server. Graphs (a), (b), and (c) in

Figure 11 depict the respective client behaviour, while (d) and (e) depict the server

behaviour and the number of triples in the server’s temporary Knowledge Base, as well.

The server processes a total of 9000 messages, 3000 from each client. Note that each

client’s behaviour through time is similar to the server’s. However, as we would expect,

the response time for each client – i.e. the time needed to receive acknowledgement

from the server – is greater than the time needed by the server to process one message,

a fact due to message synchronization in the server. Therefore, the performance of a

Priamos application is substantially influenced by the number of trackers operating

concurrently.
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Fig. 10 A client processing offline data. We can observe that the client’s performance is similar
to the server’s. The performance is mainly affected by the triples in the temporary Knowledge
Base, while the network overhead remains relatively unimportant

Having analyzed so far the performance in terms of speed, we must also note that

an equally important performance property is accuracy in the annotation of the multi-

media data. In other words, the choice of trackers is crucial in order to present adequate

statistical properties. An ideal tracker – for face, speech or event recognition, for in-

stance – will have a very high true positive rate (also referred to as detection rate)

and a very low false positive rate. As a consequence, in terms of accuracy, the system’s

behaviour is defined by the attached trackers. In the Priamos case, the face recogni-

tion follows the approach described in [55]: A sub-class Linear Discriminant Analysis

approach is used for feature extraction and a Nearest Neighbor classifier for obtain-

ing the identity per face. These identities are fused for all faces in the track using a

weighted voting scheme. Further augmenting the feature extraction part with DCT

normalization increases recognition performance by 4 percent, surpassing 90 percent

correct recognition rate given just one second of video for fusing the decisions. Re-

garding face tracking, the Camshift-based approach that is followed is presented and

evaluated in [56].

Now, regarding possible failures in any of the components that can affect perfor-

mance, we can consider two distinct cases. First, a tracker can fail to create a message.

In this case the message does not reach the middleware. Second, a tracker can create a

false positive. In this case, a message arrives at the middleware. However, the mistake

can still be dealt with by appropriate Semantic rules applied in order to assure integrity

in the values conveyed by the messages. For instance, a face that suddenly appears and

suddenly disappears and does not present continuity in its trajectory can be discarded
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Fig. 11 Three clients operating concurrently over pre-processed offline data. A three-to-one
ratio appears also at the respective performance

with the use of Semantic rules during message fusion and hence, the number of false

positives can be furthermore decreased.

If a tracker produces overwhelmingly many messages, the saw-like graphs in Figure

8 will be more frequent, meaning that the middleware will perform more frequent

maintenance operations. An approach to dealing with such a case is demonstrated in

Figure 9(a), where a higher threshold leads to less frequent maintenances. However,

under any circumstances, the behaviour of the middleware is characterized by the

notion of hard real-time: the deadlines imposed are always met.

6 Conclusions

The work presented in this paper aims at providing an approach for the real-time

Semantic annotation of contextual information for enabling the development of inno-

vative intelligent applications. We presented Priamos, a Semantic Web standards-based

middleware architecture for semantically annotating rich context information in real-

time. A distinguishing characteristic of Priamos middleware is that it separates the

content annotation functionality from the application logic, which can be plugged into

the middleware architecture in the form of an ontology and can be easily processed by

the application developer through the APIs that Priamos provides. Thus, the develop-

ment effort is eliminated enabling a variety of applications featuring real-time alerts,

such as in smart meeting rooms, advanced surveillance, environmental monitoring etc.

Another innovation in the present work is the addition of real-time Semantic pro-

cessing in contextual information. The benefit that characterizes the proposed approach

is that an intelligent infrastructure for knowledge representation such as the Priamos
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middleware can enable its (re)use in numerous ways. Among our most important ob-

servations is that the task of automated annotation in the Semantic Web community is

almost similar to the challenge of contextualizing information in context-aware systems

in a common and reusable way. The use of Semantic Web techniques in context aware

systems can add intelligence to them thus enabling the development of innovative ap-

plications. The performance measurements demonstrate that inference-based systems

have reached a mature state and can be used in order to provide intelligent results.

7 Future Work

Furthermore, the benefits that such a system provides are not limited to real-time pro-

cessing. In many cases off-line searching on large bulks of multimedia and context data

may be very time consuming unless treated at a semantic level. Everyday experience

has shown that in emergency situations currently existing systems do not provide the

mechanisms for fast, intelligent searching.

We are currently studying the integration with various types of sensors that are

commonly available such as wireless sensor networks (Bluetooth, GPS, RFID), since

the available infrastructure already incorporates the capability of handling incoming

information contained in Web Service messages. Our first results towards this direction

are presented in [57].

Another future goal includes the strengthening of the system’s security level. Es-

pecially in surveillance scenarios or in scenarios where the transmitted information is

sensitive, the system should present certain security features such as confidentiality, in-

tegrity or authentication. These features dictate the injection of security algorithms and

techniques in every step of the information flow. Specifically, the way the information is

transmitted, stored and accessed must be secured. As far as it regards transmission, the

system could support encrypted XML messages, Secure Sockets Layer (SSL) or require

user credibility in the Web Service layer. Access could be restricted with the use of

identity certificates and finally, storage could benefit of the advances in cryptography

as well.

Another improvement in the system’s behaviour can be achieved by adjusting a

sampling ratio or a temporary storage in the incoming messages. If for instance a

sensor transmits messages in a rate higher than the one in which the middleware can

process, sampling or buffering of the messages could fine-tune response times. The

difference between these approaches is that sampling will reject a number of incoming

messages while caching will store them for future process.

A more flexible rule engine implementation can also be of benefit. Rule language

expressiveness can be enriched by adding more constructs in both the languages. We

can also notice that in the current implementation the rule structure is flat for both

the Mapping and the Semantic rules, in the sense that the rules are all applied to each

incoming message. This poses no restrictions in creating a hierarchical structure in the

Mapping rules, by adding extra conjunctive clauses in the beginning of each rule, in

which case the rule engine will not parse the rest of the rule. However, for the Semantic

rules, this will not be efficient since a simple "if,class has individuals,. . ." query

can be very expensive. A Semantic rule hierarchy would allow for improved performance

results compared to the ones in Figure 7(b).

Also, the future integration with offline (asynchronous) processing techniques on

the persistent ontology model can increase the system’s speed by improving mainte-
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nance operations such as removing dated information. It would also be interesting to

improve the current maintenance operations, in order for instance to treat probable

inconsistencies that may appear due to erroneous tracker measurements.

As an open issue still remains the semantic query execution. The recent standard-

ization15 of SPARQL [53] and its adoption as the main Semantic Web query language

allows for dynamic graphical interfaces that can build queries without imposing an

additional knowledge overhead.

Moreover, the incorporation of Semantic Web Services by semantically describing

the interfaces offered by the proposed system can lead to the development of applica-

tions that are trully semantically enriched through all steps of information processing.

The Semantic Web Service Framework (SWSF) seems to be the most promising ap-

proach since it has been submitted to W3C16 but no official recommendation has

occurred yet.

Finally, it should be mentioned that systems based on the proposed middleware

architecture have the flexibility to comprise various types of sensors. The use of the

system presented in this paper presents cameras but the incoming information can

flow in the middleware through sensors of temperature, humidity, A/V sensors, location

sensors or even various environmental sensors such as oxygen, pollution and agricultural

sensors. In other words, the system’s architecture allows for distinct sensor types and

architectures to be employed in the Data Acquisition Layer of Figure 1.

Appendix A: The Priamos Mapping Rule Language Syntax

Below is provided the grammar for the Priamos Rule language. We use the BNF meta-

syntax to clarify the use of both subsets of the rule language: the Mapping and the

Semantic Rule Language.

<if> ::= ( <xml element exists>
| <xml element has value>
| <xml element has siblings> )

<xml element exists> ::= XPathExpression ( <and> | <then> )
<xml element has value> ::= XPathExpression

( gt | lt | gte | lte | eq | neq )
( Integer | String ) ( <and> | <then> )

<xml element has siblings> ::= XPathExpression
( <and> | <then> )

<and> ::= ( <xml element exists>
| <xml element has value>
| <xml element has siblings> )

<then> ::= <insert individual in class>
| <insert exactly one individual in class>
| <execute SPARQL query>

<insert individual in class> ::= OntClass [ <named after> ]
[ <and set object property> |
( <and set datatype property> )* ]

<named after> ::= XPathExpression
<insert exactly one individual in class> ::= OntClass
<and set object property> ::= OntProperty

15 Note that due to the openness of the Web, no standards can be imposed or strictly followed.
The closest approach to standardisation are the W3C or other consortia’s recommendations.
16 SWSF Overview: http://www.w3.org/Submission/SWSF/
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( <last inserted individual in class> |
<specific individual in class> )

<last inserted individual in class> ::= OntClass
<specific individual in class> ::= Individual
<and set datatype property> ::= OntProperty

( XPathExpression | String )
<execute SPARQL query> ::= String [ <and set ?variable value> ]
<and set ?variable value> ::= ( XPathExpression | String )

Appendix B: The Priamos Semantic Rule Language Syntax

<if> ::= ( <class has individuals>
| <class has subclasses>
| <number of individuals in class>
| <datatype property in class>
| <SPARQL query has results>
| <SPARQL query does not have results> )

<class has individuals> ::= OntClass ( <and> | <then> )
<class has subclasses> ::= OntClass ( <and> | <then> )
<number of individuals in class> ::= OntClass

( gt | lt | gte | lte | eq | neq )
(Integer | String) ( <and> | <then> )

<datatype property in class> ::= OntClass OntProperty
( gt | lt | gte | lte | eq | neq )
( Integer | String ) ( <and> | <then> )

<SPARQL query has results> ::= String ( <and> | <then> )
<and> ::= ( <class has individuals>

| <class has subclasses>
| <number of individuals in class>
| <datatype property in class>
| <SPARQL query has results>
| <SPARQL query does not have results> )

<then> ::= ( <insert individual in class>
| <insert exactly one individual in class>
| <insert subclass of>
| <execute a system command>
| <execute a system command once>
| <send Web Service message>
| <execute SPARQL query> )

<insert individual in class> ::= OntClass
<insert exactly one individual in class> ::= OntClass
<insert subclass of> ::= OntClass String
<execute a system command> ::= PathToExecutable
<execute a system command once> ::= PathToExecutable
<send Web Service message> ::= String
<execute SPARQL query> ::= String [ <and set ?variable value> ]
<and set ?variable value> ::= String

For both languages, String and Integer denote strings and integers respectively

in programming language terms. OntClass and OntProperty refer to the full URIs or

the QNames of classes and properties of the ontology, respectively. PathToExecutable

is the full path to an executable file of the Operating System’s filesystem, and finally,

XPathExpression is an XPath expression used to select nodes from an XML document.
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